全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2019 

有限元法研究填料形貌与介电常数对无机/有机介电复合材料介电性能的影响
Computational study of both morphologies and dielectric constant of fillers on dielectric properties of inorganic/organic dielectric composites by finite element method

DOI: 10.13801/j.cnki.fhclxb.20190416.003

Keywords: 无机/有机介电复合材料,有限元法,填料形貌,介电常数,电场分布
inorganic/organic dielectric composites
,finite element method,filler morphologies,dielectric constant,electric field distribution

Full-Text   Cite this paper   Add to My Lib

Abstract:

为了开发高储能密度的无机/有机介电复合材料,本文采用有限元法分别研究了直径为100 nm的球形填料与基体介电常数的比值(k)、球形填料在复合材料中的排列方式、球形填料尺寸(100~300 nm)、纤维状填料长径比(α)和片状填料的球形度(β)对复合材料介电性能的影响。计算结果表明,当k值大于20时,复合材料的介电常数变化不明显;球形填料沿电场方向成链式排列时,复合材料有较大的介电常数,且材料中球形填料附近处存在较大的电位移和较大的电场,说明这种填料排列方式有利于材料介电常数的提高,但会削弱材料的耐击穿能力;当球形填料随机分布时,颗粒尺寸变化对复合材料介电常数的影响不明显。对于纤维状填料,其长径比α越大且长轴沿电场方向分布时,填料自身及周边会产生较大的电位移,表明这种情况有利于复合材料介电常数的提高。对于片状填料,其球形度β越小,填料与基体界面处高电场区域越小,表明材料的耐击穿能力越高。本研究可为高介高储能材料的实验研究提供理论指导。 In order to develop inorganic/organic dielectric composites with high energy storage density, the finite element method was adopt to study the effects of both morphologies and dielectric constant of fillers on the dielectric properties of inorganic/organic composites, including the ratio of dielectric constant of spherical filler to matrix (k), the size (100-300 nm) and the arrangement of spherical fillers, the aspect ratio of fiber fillers (α) and the sphericity of nanoplate fillers (β). The results show that the dielectric constant of composites doesn't change significantly when k exceeds 20. The composites will get large dielectric constant when the spherical fillers are chained along the direction of the electric field. Large electric displacement and large electric field appear at the interface between the spherical fillers and matrix, indicating that this arrangement is beneficial to the improvement of the dielectric constant of the composites, but weakens the breakdown resistance. When the spherical fillers are randomly distributed in the matrix, the sizes of fillers have little effect on the dielectric constant of composites. Fiber fillers with large α and the long axis along the direction of electric field will result in large electric displacement, which indicates this filler will improve dielectric constant of composites. The nanoplate fillers with small β bring out lower electric field at the interface, indicating that the composites possess higher breakdown resistance. 国家自然科学基金(51372014

References

[1]  KANG D, WANG G, HUANG Y, et al. Decorating TiO2 nanowires with BaTiO3 nanoparticles:A new approach leading to substantially enhanced energy storage capability of high-k polymer nanocomposites[J]. ACS Applied Materials & Interfaces, 2018, 10(4):7b16409.
[2]  ZHOU K, BOGGS S. Effective dielectric constant of a linear matrix filled with linear and nonlinear spherical particles[C]//Pulsed Power Conference, IEEE, 2009:342-345.
[3]  冯晓军, 刘晓林, 赵坤, 等. 多巴胺改性BaTiO3对BaTiO3/PVDF复合材料击穿场强的影响[J]. 复合材料学报, 2015, 32(3):699-704.FENG X J, LIU X L, ZHAO K, et al. Effects of dopamine-modified BaTiO3 on breakdown strength of BaTiO3/PVDF composites[J]. Acta Materiae Compositae Sinica, 2015, 32(3):699-704(in Chinese).
[4]  ZHU L. Exploring strategies for high dielectric constant and low loss polymer dielectrics[J]. The Journal of Physical Chemistry Letters, 2014, 5(21):3677-3687.
[5]  CHU B J, ZHOU X, REN K L, et al. A dielectric polymer with high electric energy density and fast discharge speed[J]. Science, 2006, 313(5785):334-336.
[6]  KARDEN E, PLOUMEN S, FRICKE B, et al. Energy storage devices for future hybrid electric vehicles[J]. Journal of Power Sources, 2007, 168(1):2-11.
[7]  DANG Z M, WANG H Y, ZHANG Y H, et al. Morphology and dielectric property of homogenous BaTiO3/PVDF nanocomposites prepared via the natural adsorption action of nanosized BaTiO3[J]. Macromolecular Rapid Communications, 2005, 26(14):1185-1189.
[8]  LU H W, LIN J Q, YANG W L, et al. Improved dielectric strength and loss tangent by interface modification in PI@BCZT/PVDF nano-composite films with high permittivity[J]. Journal of Materials Science:Materials in Electronics, 2017, 28(18):13360-13370.
[9]  KIM P, DOSS N M, TILLOTSON J P, et al. High energy density nanocomposites based on surface-modified BaTiO3 and a ferroelectric polymer[J]. ACS Nano, 2009, 3(9):2581-2592.
[10]  XU N X, HU L, ZHANG Q L, et al. Significantly enhanced dielectric performance of poly (vinylidene fluoride-co-hexafluoropylene) based composites filled with hierarchical flower-like TiO2 particles[J]. ACS Applied Materials & Interfaces, 2015, 7(49):27373-27381.
[11]  FENG Y, LI W L, HOU Y F, et al. Enhanced dielectric properties of PVDF-HFP/BaTiO3-nanowire composites induced by interfacial polarization and wire-shape[J]. Journal of Materials Chemistry C, 2015, 3(6):1250-1260.
[12]  LUO H, WU Z, ZHOU X F, et al. Enhanced performance of P (VDF-HFP) composites using two-dimensional BaTiO3 platelets and graphene hybrids[J]. Composites Science and Technology, 2018, 160:237-244.
[13]  WANG S J, QU P, LI C, et al. Hydrothermal synthesis of dendritic BaTiO3 ceramic powders and its application in BaTiO3/P (VDF-TrFE) composites[J]. International Journal of Applied Ceramic Technology, 2017, 14(5):969-975.
[14]  MARZ M, SCHLETZ A, ECKSRDT B, et al. Power electronics system integration for electric and hybrid vehicles[C]//International Conference on Integrated Power Electronics Systems, IEEE, 2010:1-10.
[15]  MCNAB I R. Pulsed power for electric guns[J]. Magnetics IEEE Transactions on Magnetics, 1997, 33(1):453-460.
[16]  GUO M, HAYAKAWA T, KAKIMOTO M, et al. Organic macromolecular high dielectric constant materials:Synthesis, characterization, and applications[J]. Journal of Physical Chemistry B, 2011, 115(46):13419-13432.
[17]  JOW T R, MACDOUGALL F W, ENNIS J B, et al. Pulsed power capacitor development and outlook[C]//Pulsed Power Conference, IEEE, 2015:1-7.
[18]  CHEN G R, YANG W L, LIN J Q, et al. Geometrical shape adjustment of KTa0.5Nb0.5O3 nanofillers for tailored dielectric properties of KTa0.5Nb0.5O3/PVDF composite[J]. Journal of Materials Chemistry C, 2017, 5(32):8135-8143.
[19]  SIDDABATTUNI S, SCHUMAN T P, DOGAN F. Improved polymer nanocomposite dielectric breakdown performance through barium titanate to epoxy interface control[J]. Materials Science and Engineering B, 2011, 176(18):1422-1429.
[20]  LIU S H, XUE S X, ZHANG W Q, et al. Enhanced dielectric and energy storage density induced by surface-modified BaTiO3 nanofibers in poly (vinylidene fluoride) nanocompo-sites[J]. Ceramics International, 2014, 40(10):15633-15640.
[21]  PENG X H, LIU X L, QU P, et al. Enhanced breakdown strength and energy density of PVDF composites by introducing boron nitride nanosheets[J]. Journal of Materials Science:Materials in Electronics, 2018, 29(19):16799-16804.
[22]  CHEN S S, HU J, GAO L, et al. Enhanced breakdown strength and energy density in PVDF nanocomposites with functionalized MgO nanoparticles[J]. RSC Advances, 2016, 6(40):33599-33605.
[23]  WANG Y U, TAN D Q. Computational study of filler microstructure and effective property relations in dielectric compo-sites[J]. Journal of Applied Physics, 2011, 109(10):034115.
[24]  CAI Z M, WANG X H, LUO B C, et al. Dielectric response and breakdown behavior of polymer-ceramic nano-compo-sites:The effect of nanoparticle distribution[J]. Composites Science and Technology, 2017, 145:105-113.
[25]  SHEN Z H, WANG J J, LIN Y, et al. High Throughput phase field design of high energy density polymer nanocomposites[J]. Advanced Materials, 2018, 30(2):1704380.
[26]  CHEN J W, WANG X C, YU X M, et al. High dielectric constant and low dielectric loss poly (vinylidene fluoride) nanocomposites via a small loading of two-dimensional Bi2Te3@Al2O3 hexagonal nanoplates[J]. Journal of Materials Chemistry C, 2018, 6(2):271-279.
[27]  JIN Y, XIA N, GERHARDT R A. Enhanced dielectric properties of polymer matrix composites with BaTiO3 and MWCNT hybrid fillers using simple phase separation[J]. Nano Energy, 2016, 30:407-416.
[28]  LIU S H, WANG J, SHEN B, et al. Enhanced discharged energy density and efficiency of poly (vinylidene fluoride) nanocomposites through a small loading of core-shell structured BaTiO3@Al2O3 nanofibers[J]. Ceramics International, 2017, 43(1):585-589.
[29]  HAO Y N, WANG X H, O'BRIEN S, et al. Flexible BaTiO3/PVDF gradated multilayer nanocomposite film with enhanced dielectric strength and high energy density[J]. Journal of Materials Chemistry C, 2015, 3(37):9740-9747.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133