|
- 2019
盐酸活化对石墨相氮化碳(g-C3N4)结构和g-C3N4/S锂硫电池正极复合材料性能的影响
|
Abstract:
以三聚氰胺为原料制备石墨相氮化碳(g-C3N4),加入盐酸进行水热处理得到酸活化的g-C3N4。研究了盐酸活化对g-C3N4结构、形貌及锂硫电池g-C3N4/S正极复合材料电化学性能的影响。实验结果表明:盐酸活化处理后,g-C3N4的层间距变化不显著。随着盐酸浓度增大,g-C3N4比表面积先增大后减小,当盐酸浓度为2.5wt%时,比表面积最大为86.1 m2·g-1,与未处理g-C3N4的13 m2·g-1相比提高了5~6倍;盐酸活化g-C3N4/S正极复合材料的比容量和循环性能也呈现先增大后减小的趋势,当盐酸浓度为2.5wt%时,比容量和循环性能最好,比容量为1 538 mAh·g-1,循环50次后容量保持率为77.8%,电化学性能与比表面积呈强相关性。 Graphite carbonitride (g-C3N4) was prepared from melamine and hydrothermally treated with hydrochloric acid to obtain acid-activated g-C3N4. The effects of hydrochloric acid activation on the structure and morphology of g-C3N4 and the electrochemical performance of g-C3N4/S cathode composites were investigated experimentally. The experimental results show that g-C3N4 layer spacing does not change significantly after hydrochloric acid activation. With the increase of hydrochloric acid concentration, the specific surface area of the g-C3N4 sample first increases and then decreases. When the concentration of hydrochloric acid is 2.5wt%, the maximum specific surface area is 86.1 m2·g-1, which is 5-6 times higher than untreated g-C3N4 of 13 m2·g-1. The specific capacity and cycle performance of hydrochloric acid activated g-C3N4/S cathode composites also increase first and then decrease. When the concentration of hydrochloric acid is 2.5wt%, the specific capacity and cycle performance of the hydrochloric acid activated g-C3N4/S cathode composite sample are the best, and the specific capacity is 1 538 mAh·g-1. After 50 cycles, its capacity holding rate is 77.8%. The electrochemical performance and specific surface area of hydrochloric acid activated g-C3N4/S cathode composites show a strong correlation
[1] | MENG Z, XIE Y, CAI T W, et al. Graphene-like g-C3N4, nanosheets/sulfur as cathode for lithium-sulfur battery[J]. Electrochimica Acta, 2016, 210:829-836. |
[2] | LIU J H, LI W F, DUAN L M, et al. A graphene-like oxygenated carbon nitride material for improved cycle-life lithium/sulfur batteries[J]. Nano Letters, 2015, 15(8):5137-5140. |
[3] | PANG Q, NAZAR L F. Long-life and high-areal-capacity Li-S batteries enabled by a light-weight polar host with intrinsic polysulfide adsorption[J]. ACS Nano, 2016, 10(4):4111-4113. |
[4] | CAO J, CHEN C, ZHAO Q, et al. A flexible nanostructured paper of a reduced graphene oxide-sulfur composite for high-performance lithium-sulfur batteries with unconventional configurations[J]. Advanced Materials, 2016, 28(43):9629-9631. |
[5] | ZHANG Y, THOMAS A, ANTONIETTI M, et al. Activation of carbon nitride solids by protonation:Morphology changes, enhanced ionic conductivity, and photoconduction experiments[J]. Journal of the American Chemical Society, 2009, 131(1):50-52. |
[6] | 贾旭平. 国外锂硫电池研究进展[J]. 电源技术, 2014, 38(9):1765-1767. JIA X P. Advance of overseas lithium sulfur batteries[J]. Chinese Journal of Power Sources, 2014, 38(9):1765-1767(in Chinese). |
[7] | JI X, LEE K T, NAZAR L F. A highly ordered nanostructured carbon-sulphur cathode for lithium-sulphur batteries[J]. Nature Materials, 2009, 2460(17):500-506. |
[8] | 刘珍红, 孙晓刚, 邱治文, 等. 多壁碳纳米管纸作正极集流体的锂硫电池性能[J]. 复合材料学报, 2017, 34(4):873-880. LIU Z H, SUN X G, QIU Z W, et al. Performance of lithium sulfur batteries using multiwalled carbon nanotube paper as cathode current collector[J]. Acta Materiae Compositae Sinica, 2017, 34(4):873-880(in Chinese). |
[9] | 闫崇, 李向南, 曹朝霞, 等. 高能球磨法制备PTFE/科琴黑-C柔性复合材料及其电化学应用[J]. 复合材料学报, 2016, 33(10):2390-2396. YAN C, LI X N, CAO Z X, et al. Preparation of PTFE/Ketjen Black-C flexible composites by high energy ball milling method and its electrochemical application[J]. Acta Materiae Compositae Sinica, 2016, 33(10):2390-2396(in Chinese). |
[10] | SHIM J, STRIEBEL K A, CAIRNS E J. The lithium/sulfur rechargeable cell[J]. Journal of the Electrochemical Society, 2002, 149(10):1321-1325. |
[11] | ZHANG J Y, KONG L B, ZHAN L Z, et al. Sulfur organic polymer:Noval cathode active material for rechargeable lithium batteries[J]. Journal of Power Sources, 2007, 168(1):278-281. |
[12] | YAN S C, LI Z S, ZOU Z G. Photodegradation performance of g-C3N4 fabricated by directly heating melamine[J]. Langmuir, 2009, 25(17):10397-10401. |
[13] | 吴思展. 类石墨氮化碳(g-C3N4)的合成、加工处理、修饰及其光催化性能的研究[D]. 广州:华南理工大学, 2014. WU S Z. Synthesis, processing and modification of graphitic carbon nitride with enhanced photocatalytic activity[D]. Guangzhou:South China University of Technology, 2014(in Chinese). |
[14] | 杨晓晖, 王红军, 陆希峰, 等. 石墨型C3N4的固态合成及嵌锂性能研究[J]. 化学学报, 2009, 67(11):1166-1170. YANG X H, WANG H J, LU X F, et al. Solid-state synthesis of graphite-like C3N4 and its reversible Li+ intercalation[J]. Acta Chimica Sinica, 2009, 67(11):1166-1170(in Chinese). |
[15] | 熊仕昭, 洪晓斌, 谢凯, 等. 改善锂硫电池循环性能的研究进展[J]. 化工进展, 2011, 30(5):991-996. XIONG S Z, HONG X B, XIE K, et al. Advance in improvement of cycle life of lithium-sulfur batteries[J]. Chemical Industry & Engineering Progress, 2011, 30(5):991-996(in Chinese). |
[16] | LI Y, FITCH B. Effective enhancement of lithium-ion battery performance using SLMP[J]. Electrochemistry Communications, 2011, 13(7):664-667. |
[17] | LIN C, LEON L. Recent advances in lithium-sulfur batteries[J]. Journal of Power Sources, 2014, 267:770-783. |
[18] | VAUGHEY J T, LIU G, ZHANG J. Stabilizing the surface of lithium metal[J]. MRS Bulletin, 2014, 39:429-435. |
[19] | 吴锋, 吴生先, 陈人杰, 等. 锂硫电池正极用硫碳复合材料的制备和电化学研究[J]. 北京理工大学学报, 2009, 29(8):737-740. WU F, WU S X, CHEN R J, et al. Preparation and electrochemical properties of sulfur-carbon composite as cathode materials for the lithium-sulfur batteries[J]. Transactions of Beijing Institute of Technology, 2009, 29(8):737-740(in Chinese). |
[20] | JI X, LEE K T, NAZAR L F. A highly ordered nanostructured carbon-sulphur cathode for lithium-sulphur batteries[J]. Nature Materials, 2009, 8(6):500-506. |
[21] | 陈宗宗, 张瑞丰. 基于Polymer-S-C/SiO2多层结构大孔电极锂硫离子电池的制备与性能[J]. 复合材料学报, 2014, 31(2):525-531. CHEN Z Z, ZHANG R F. Preparation and performance of lithium-sulfur batteries based on multilayer structure in polymer-S-C/SiO2 macroporous electrodes[J]. Acta Materiae Compositae Sinica, 2014, 31(2):525-531(in Chinese). |