|
- 2019
石墨烯纳米片/聚乙烯复合薄膜电磁干扰屏蔽
|
Abstract:
研制了一种取向性较高的石墨烯纳米片/低密度聚乙烯(GNS/LDPE)复合薄膜三明治结构,分析其电磁干扰屏蔽(EMIS)性能和机制。实验结果表明,GNS/LDPE复合薄膜的EMIS性能主要决定于其电学性质。根据材料电导率对多层复合膜进行理论计算,探讨GNS/LDPE复合薄膜多层结构的光吸收和多层反射机制。通过调整层结构的厚度和表面层深度及屏蔽材料的电导率可以提高EMIS性能,并且增加屏蔽层厚度可增强吸收屏蔽作用从而进一步提高总屏蔽性能。结构优化后的EMIS效率可以达到31 dB,证明GNS/LDPE复合薄膜具有显著的EMIS作用。纳米复合三明治结构的屏蔽机制为设计高EMIS性能纳米复合物提供了基本依据。提出了实现高性能GNS/LDPE复合薄膜的有效技术方法,在EMIS涂层领域具有潜在的应用。 Graphene-nanosheet/polyethylene(GNS/LDPE) composite films with considerable orientation fabricated in sandwich structure were developed to investigate the electromagnetic interference shielding (EMIS) performance. The experimental results demonstrate that electrical property primarily determines EMIS function. The according theoretical calculations are performed based on well-materialized conductivity as for multilayer composite films to explored the essential mechanism of absorption and multiple-reflection for polymer-based graphene nanocomposite films. The improved EMIS performance could be obtained though modifying thickness, skin depth and electrical conductivity of active material in sandwich structure. The total shielding performance can be further improved from absorption shielding enhancement by enlarging shielding thickness. The optimized shielding efficiency achieves up to 31 dB, demonstrating significant shielding effectiveness of GNS/LDPE composite films. The shielding mechanism of nanocomposite sandwich structure presents fundamental regulation of designing high EMIS nanocomposites. The results reasonably suggest a effective technical approach to fulfill promising graphene/polymer nanocomposite films potentially in EMIS coating applications. 国家自然科学基金青年基金(51302047
[1] | PANDE S, CHAUDHARY A, PATEL D, et al. Mechanical and electrical properties of multiwall carbon nanotube/polycarbonate composites for electrostatic discharge and electromagnetic interference shielding applications[J]. RSC Advances, 2014, 4:13839-13849. |
[2] | QAVAMNIA S S, NASOURI K. Facile fabrication of carbon nanotubes/polystyrene composite nanofibers for high performance electromagnetic interference shielding[J]. Fiber Polymer, 2016, 17:1977-1984. |
[3] | NASOURI K, SHOUSHTARI A M. Designing, modeling and manufacturing of lightweight carbon nanotubes/polymer composite nanofibers for electromagnetic interference shielding application[J]. Composites Science and Technology, 2017, 145:46-54. |
[4] | WU Y, WANG Z, LIU X, et al. Ultralight graphene foam/conductive polymer composites for exceptional electromagnetic interference shielding[J]. ACS Applied Materials & Interfaces, 2017, 9(10):9059-9069. |
[5] | SINGH A P, MISHRA M, HASHIM D, et al. Probing the engineered sandwich network of vertically aligned carbon nanotube-reduced graphene oxide composites for high performance electromagnetic interference shielding applications[J]. Carbon, 2014, 85:79-88. |
[6] | YAN D X, PANG H, LI B, et al. Structured reduced graphene oxide/polymer composites for ultra-efficient electromagnetic interference shielding[J]. Advanced Functional Materials, 2015, 25:559-566. |
[7] | WANG L L, TAY B K, SEE K Y, et al. Electromagnetic interference shielding effectiveness of carbon-based materials prepared by screen printing[J]. Carbon, 2009, 47(8):1905-1910. |
[8] | PARK J G, LOUIS J, CHENG Q, et al. Electromagnetic interference shielding properties of carbon nanotube buckypaper composites[J]. Nanotechnology, 2009, 20(41):415702-415708. |
[9] | SEO M A, YIM J H, AHN Y H, et al. Terahertz electromagnetic interference shielding using single-walled carbon nanotube flexible films[J]. Applied Physics Letters, 2008, 93(23):231905-231907. |
[10] | HSIAO S T, MA C C, TIEN H W, et al. Effect of covalent modification of graphene nanosheets on the electrical property and electromagnetic interference shielding performance of a water-borne polyurethane composite[J]. ACS Applied Materials & Interfaces, 2015, 7(4):2817-2826. |
[11] | VAN ROOYEN L J, BISSETT H, KHOATHANE M C, et al. Gas barrier properties of oxyfluorinated graphene filled polytetrafluoroethylene nanocomposites[J]. Carbon, 2016, 109:30-39. |
[12] | CAROTENUTO G, DENICOLA S, PALOMBA M, et al. Mechanical properties of low-density polyethylene filled by graphite nanoplatelets[J]. Nanotechnology, 2012, 23:485705. |
[13] | SAINI P, CHOUDHARY V, VIJAYAN N, et al. Improved electromagnetic interference shielding response of poly(aniline)-coated fabrics containing dielectric and magnetic nanoparticles[J]. The Journal of Physical Chemistry C, 2012, 116(24):13403-13412. |
[14] | CAO M S, SONG W L, HOU Z L, et al. The effects of temperature and frequency on the dielectric properties, electromagnetic interference shielding and microwave absorption of short carbon fiber/silica composites[J]. Carbon, 2010, 48(3):788-796. |
[15] | MICHELI D, APOLLO C, PASTORE R, et al. X-Band microwave characterization of carbon-based nanocomposite material, absorption capability comparison and RAS design simulation[J]. Composites Science Technology, 2010, 70(2):400-409. |
[16] | PARK J G, LOUIS J, CHENG Q, et al. Electromagnetic interference shielding properties of carbon nanotube buckypaper composites[J]. Nanotechnology, 2009, 20(41):415702-415708. |
[17] | AL-SALEH M H, SUNDARARAJ U. Electromagnetic interference shielding mechanisms of CNT/polymer composites[J]. Carbon, 2009, 47(7):1738-1746. |
[18] | CHUNG D D L. Electromagnetic interference shielding effectiveness of carbon materials[J]. Carbon, 2001, 39(2):279-285. |
[19] | CUI C H, YAN D X, PANG H, et al. Towards efficient electromagnetic interference shielding performance for polyethylene composites by structuring segregated carbon black/graphite networks[J]. Chinese Journal of Polymer Science, 2016, 34:1490-1499. |
[20] | SONG W L, CAO M S, LU M M, et al. Flexible graphene/polymer composite films in sandwich structures for effective electromagnetic interference shielding[J]. Carbon, 2014, 66:67-76. |
[21] | KUMAR P, KUMAR A, CHO K Y, et al. An asymmetric electrically conducting self-aligned graphene/polymer compo-site thin film for efficient electromagnetic interference shielding[J]. AIP Advances, 2017, 7(1):015103-015107. |
[22] | YANG H L, LI Z L, ZOU H W, et al. Preparation of porous polyimide/in-situ reduced graphene oxide composite films for electromagnetic interference shielding[J]. Polymers for Advanced Technologies, 2017, 28:233-242. |
[23] | HU M J, GAO J F, DONG Y C, et al. Flexible transparent PES/silver nanowires/PET sandwich-structured film for high-efficiency electromagnetic interference shielding[J]. Langmuir, 2012, 28(18):7101-7106. |
[24] | LI Y, ZHAO Y, SUN J, et al. Mechanical and electromagnetic interference shielding properties of carbon fiber/graphene nanosheets/epoxy composite[J]. Polymer Composite, 2017, 37(8):2494-2502. |
[25] | HSIAO S T, MA C C M, TIEN H W, et al. Using a non-covalent modification to prepare a high electromagnetic interference shielding performance graphene nanosheet/water-borne polyurethane composite[J]. Carbon, 2013, 60(14):57-66. |
[26] | HSIAO S T, MA C C M, TIEN H W, et al. Lightweight and flexible reduced graphene oxide/water-borne polyurethane composites with high electrical conductivity and excellent electromagnetic interference shielding performance[J]. ACS Applied Materials & Interfaces, 2014, 13:10667-10678. |
[27] | CHUNG D D. Review graphite[J]. Graphite Journal Materials Science, 2002, 37:1475-1489. |
[28] | SUN P, ZHU M, WANG K, et al. Selective Ion penetration of graphene oxide membranes[J]. ACS Nano, 2013, 7:428-437. |
[29] | MACIAS A T, MACKERELL A D. CH/π interactions involving aromatic amino acids:Refinement of the CHARMM tryptophan force field[J]. Computers & Chemical Engineering, 2005, 26:1452-1463. |
[30] | ARJMAND M, MAHMOODI M, GELVES G A, et al. Electrical and electromagnetic interference shielding properties of flow-induced oriented carbon nanotubes in polycarbonate[J]. Carbon, 2011, 49(11):3430-3440. |
[31] | LI Y, CHEN C, ZHANG S, et al. Electrical conductivity and electromagnetic interference shielding characteristics of multiwalled carbon nanotube filled polyacrylate composite films[J]. Applied Surface Science, 2008, 254(18):5566-5571. |
[32] | MAHMOODI M, ARJMAND M, SUNDARARAJ U, et al. The electrical conductivity and electromagnetic interference shielding of injection molded multi-walled carbon nanotube/polystyrene composites[J]. Carbon, 2012, 50(4):1455-1464. |
[33] | SONG W L, CAO M S, LU M M, et al. Alignment of graphene sheets in wax composites for electromagnetic interference shielding improvement[J]. Nanotechnology, 2013, 24(11):115708(1-10). |
[34] | ZHANG H B, YAN Q, ZHENG W G, et al. Tough graphenepolymer microcellular foams for electromagnetic interference shielding[J]. ACS Applied Materials & Interfaces, 2011, 3(3):918-924. |