|
- 2019
连续纤维增强热塑性树脂基复合材料自动铺放原位成型技术的航空发展现状
|
Abstract:
基于自动铺丝手段,连续纤维增强热塑性树脂基复合材料可实现原位成型效果,即铺贴同时完成零件制造。该技术可降低复合材料成本达到50%以上,由于其高效低耗的技术特点,该技术被认为在航空领域具有广泛的应用前景。文章调研了热塑性复合材料原位成型技术在国内外航空领域相关的研究和应用工作。结合典型的技术开发案例,重点分析了目前原位成型技术在应用材料、装备及工艺控制技术等方面的水平现状,并阐述了原位成型技术的最新发展趋势。 In-situ consolidation technology of continuous fiber reinforced thermoplastic matrix composites which means the parts manufacturing can be completed simultaneously could be achieved by auto fiber placement(AFP) machine with the cost decrease of more than 50%.Due to its high efficiency and low consumption, the in-situ consolidation technology is considered to have wide application prospects in aviation field. The research and application of thermoplastic composite in-situ consolidation technology in aviation field at home and abroad were investigated. The current level of materials, equipment and process control on in-situ consolidation technology has been analyzed combined with the typical application of the technology. Meanwhile, the latest development trend of in-situ consolidation technology was also being stated. 中国商飞上海飞机制造有限公司创新基金(F-CXKT-0155
[1] | 王向明, 苏亚东, 吴斌. 增材技术在飞机结构研制中的应用[J]. 航空制造技术, 2014(22):16-20. WANG X M, SU Y D, WU B. Application of Additive Manufacturing Technology on Aircraft Structure Development[J]. Aeronautical Manufacturing Technology, 2014(22):16-20(in Chinese). |
[2] | 孙成. 复合材料翼梁自动铺丝技术研究[D]. 南京:南京航空航天大学, 2013. SUN C. Research on Automated Fiber Placement Technology of Composite Wing Spar[D]. Nanjing:Nanjing University of Aeronautics and Astronautics, 2013(in Chinese). |
[3] | CAI X. Determination of process parameters for the manufacturing of thermoplastic composite cones using automated fiber placement[D]. Canada:Concordia University, Montreal, 2012. |
[4] | KIMBALL K, DAVID H. In-situ consolidated thermoplastic composite aerospace structures[C]. SAMPE EU, 2008. |
[5] | SAMOIL S, ZLATKO S, SVETLANA R. Improving the final properties of thermoplastic composites manufactured with laser automated tape placement(LATP)[C]. 13th SAMPE China Conference & Exhibition, Shanghai, China, 2018. |
[6] | ZHANG D N, DIRK H, SURESH G. A. Out of Autoclave Consolidation of Voids in Continuous Fiber Reinforced Thermoplastic Composites[C]. SAMPE:America, Long Beach, 2013. |
[7] | 杜善义. 先进复合材料与航空航天[J]. 复合材料学报, 2007, 24(1):1-12. DU S Y. Advanced composite materials and aerospace engineering[J]. Acta Materiae Compositae Sinica, 2007, 24(1):1-12(in Chinese). |
[8] | GOODMAN K E, LOOS A C. Thermoplastic Prepreg Manufacture[J]. Journal of Thermoplastic Composite Materials, 1990(3):34. |
[9] | KONRAD K. Automated fiber placement systems overview[J]. Transactions of the Institute of Aviation, 2016, 4(245) 52-59. |
[10] | LI Z M, YANG T, DU Y. Dynamic finite element simulation and transient temperature field analysis in thermoplastic composite tape lay-up process[J]. Journal of Thermoplastic Composite Materials, 2015, 28(4):558-573. |
[11] | DARA P H, LOOS A C. Thermoplastic matrix composite processing model[R]. Virginia Polytechnic Institute and State University, 1985. |
[12] | LEE W I, SPRINGER G S. A model for the manufacturing process of thermoplastic matrix composites[J]. Composite Materials, 1987, 21(11):1017-1055. |
[13] | GAUTAM K J. Finite Element Simulation of the In-Situ AFP process for Thermoplastic Composites using Abaqus[D]. Delft, Holland:Delft University of Technology, 2016. |
[14] | TIERNEY J, HEIDER D, GILLESPIE J W. Welding of thermoplastic composites using the automated tow placement process, modelling and control[J]. Proceedings of the ANTEC'97. Society of Plastic Engineers, 1997:1165-1170. |
[15] | BALASUBRAMANYAM, JONES R S, WHEELER A B. Modelling transverse flows of reinforced thermoplastic composite materials[J]. Composites, 1989, 20(01):33-37. |
[16] | AUGUST Z, DAVID H. Additive manufacturing of high performance composite structures[M]. US:Automated Dynamics Corp, 2014. |
[17] | HOSSEIN G K. Analysis of residual stress in thermoplastic composites manufactured by automated fiber placement[D]. Montreal, Canada:Concordia University, 2015. |
[18] | PATRICIA P P, HARALD E N, ADRIAAN B. Residual stresses in thermoplastic composites-A study of the literature-Part I:Formation of residual stresses[J]. Composites Part A, 2006(37):1847-1857. |
[19] | DIEGO S D, ISABEL M, FERNANDO R L. On-line monitoring of a laser-assisted fiber placement process with CFR thermoplastic matrix by using Fiber Bragg Gratings[C]. 8th EWSHM, European Workshop On Structural Health Monitoring. Spain, Bilbao, 2016. |
[20] | 林德春, 潘鼎, 高健, 等. 碳纤维复合材料在航空航天领域的应用[C]. 2014年高性能纤维及复合材料新技术应用与产业化推进研讨会, 2014. LIN D C, PAN D, GAO J, et al. Application of Carbon Fiber Composite in Aerospace[C]. Seminar on Application and Industrialization of High-performance Fiber and Composite Materials, 2014(in Chinese). |
[21] | 见雪珍, 杨洋, 袁协尧, 等. 商用客机连续纤维增强热塑性复合材料的现状及发展趋势[J]. 上海塑料, 2015(2):17-22. JIAN X Z, YANG Y, YUAN X Y, et al. Status and development trend of continuous fiber reinforced thermoplastic composites in commercial aircraft[J]. Shanghai plastics, 2015(2):17-22(in Chinese). |
[22] | 宋清华, 肖军, 文立伟, 等. 玻璃纤维增强热塑性复合材料在航空航天领域中的应用[J]. 玻璃纤维, 2012(6):40-43. SONG Q H, XIAO J, WEN L W, et al. Applications of glass fiber reinforced thermoplastics in aerospace sector[J]. Fiber Glass, 2012(6):40-43(in Chinese). |
[23] | 吴靖. 长纤维增强热塑性复合材料的研究进展[J]. 化工进展, 1995(2):1-4. WU J. Research advanced in long fiber reinforced thermoplastic composites[J]. Chemical Industry and Engineering Progress, 1995(2):1-4(in Chinese). |
[24] | 肖德凯, 张晓云, 孙安垣. 热塑性复合材料研究进展[J]. 山东化工, 2007, 36(2):15-21. XIAO D K, ZHANG X Y, SUN A Y. Advance of the research in thermoplastic composite materials[J]. Shandong Chemical Industry, 2007, 36(2):15-21(in Chinese). |
[25] | 周雷敏, 孙沛. 波音787客机的复合材料国际化制造[J]. 高科技纤维与应用, 2013(2):57-61. ZHOU L M, SUN P. Boeing 787 composites' international manufacturing[J]. Hi-tech Fiber& Application, 2013(2):57-61(in Chinese). |
[26] | 马全胜, 王宝铭. 复合材料用高性能热塑性树脂最新进展[J]. 玻璃钢, 2017(3):25-30. MA Q S, WANG B M. The latest development of high performance thermoplastic resin for composites[J]. Fiber reinforced plastics, 2017(3):25-30(in Chinese). |
[27] | 咸梦蝶, 闫宝瑞, 信春玲, 等. 热塑性复合材料自动铺放成型工艺[J]. 塑料, 2017, 46(5):66-68. XIAN M D, YAN B R, XIN C L, et al. Processing of automatic placement of thermoplastic composites[J]. Plastics, 2017, 46(5):66-68(in Chinese). |
[28] | BAPTISTE P, NICOLAS B, VINCENT S. Heat transfer analysis at high cooling rate on the surface of thermoplastic parts[J]. International Journal of Heat and Mass Transfer, 2017(106):253-262. |
[29] | BARNES J A, COGSWELL F N. Transverse flow processes in continuous fibre reinforced thermoplastic composites[J]. Composites, 1989, 20(01):38-42. |
[30] | EBRAHIM O, PRUSTY B G, PAUL C. In-situ simultaneous measurement of strain and temperature in automated fiber placement (AFP) using optical fiber Bragg grating (FBG) sensors[J]. Advanced Manufacturing:Polymer & Composites Science, 2017, 3(2):52-61. |
[31] | 李培旭, 陈萍, 刘卫平. 先进复合材料增材制造技术最新发展及航空应用趋势[J]. 玻璃钢/复合材料, 2016(S):172-176. LI P X, CHEN P, LIU W P. The latest development of advanced composite additive manufacturing technology and its application tendency in aviation[J]. Fiber Reinforced Plastics/Composites, 2016(S):172-176(in Chinese). |
[32] | AUGUST Z, OSTRANDER G, MICHASIOW J. Recent developments in automated fiber placement of thermoplastic composites[C]. SAMPE:America, Long Beach, 2013 |
[33] | 王强华. 复合材料的创新增材制造[J]. 纤维复合材料, 2014(2):41-45. WANG Q H. Innovative additive manufacturing of composites[J]. Fiber Composites, 2014(2):41-45(in Chinese). |
[34] | 宋清华, 肖军, 文立伟, 等. 热塑性复合材料自动纤维铺放装备技术[J]. 复合材料学报, 2016, 33(6):1214-1222. SONG Q H, XIAO J, WEN L W, et al. Automated fiber placement system technology for thermoplastic composites[J]. Acta Materiae Compositae Sinica, 2016, 33(6):1214-1222(in Chinese). |
[35] | 韩振宇, 李玥华, 富宏亚, 等. 热塑性复合材料纤维铺放工艺的研究进展[J]. 材料工程, 2012(2):91-95. HAN Z Y, LI Y H, FU H Y, et al. Thermoplastic composites fiber placement process research[J]. Journal of Materials Engineering, 2012(2):91-95(in Chinese). |
[36] | 张建宝, 赵文宇, 王俊峰, 等. 复合材料自动铺放工艺技术研究现状[J]. 航空制造技术, 2014(16):80-83. ZHANG J B, ZHAO W Y, WANG J F, et al. Research status of automated placement processing technology of composites[J]. Aeronautical Manufacturing Technology, 2014(16):80-83(in Chinese). |
[37] | RODRIGUEZ L F, ZUAZO M, CALVO S. Activities on in-situ consolidation by automated placement technologies[C]. 16th European Conference On Composite Materials(ECCM), Spain, Seville, 2014. |
[38] | TURNKOR S, TURKMEN N, CHASSAPIS C, et al. Modeling of heat transfer in thermoplastic composite tape Lay-up manufacturing[J]. Heat Mass Transfer, 2001, 28(1):49-58. |
[39] | 李玥华. 热塑性预浸丝变角度铺放及其轨迹规划的研究[D]. 哈尔滨:哈尔滨工业大学, 2013. LI Y H. Research on thermoplastic towpreg variable angle placement and trajectory planning[D]. Harbin:Harbin Institute of Technology, 2013(in Chinese). |
[40] | 李志猛, 杨涛, 杜宇, 等. 热塑性预浸丝铺放过程中温度场数学模型及其仿真[J]. 宇航材料工艺, 2012, 42(3):20-23. LI Z M, YANG T, DU Y, et al. Modeling and simulation of heat transfer in thermoplastic composite tow-placement process[J]. Aerospace Materials and Technology, 2012, 42(3):20-23(in Chinese). |
[41] | MUHAMMAD A K, PETER M A. Tracing the void content development and identifi cation of its effecting parameters during in situ consolidation of thermoplastic tape material[J]. Polymers & Polymer Composites, 2010, 18(01):1-15. |
[42] | MAFFEZZOLI A, KENNY J M, NICOLAIS L. A macrokinetic approach to crystallization modelling of semicrystalline thermoplastic matrices for advanced composites[J]. Journal of Materials Science, 1993, 28(18):4994-5001. |
[43] | PATRICIA P. P, HARALD E N, ADRIAAN B. Residual stresses in thermoplastic composites-A study of the literature-Part Ⅱ:Experimental techniques[J]. Composites Part A, 2007(38):651-665. |
[44] | PATRICIA P. P, HARALD E N, ADRIAAN B. Residual stresses in thermoplastic composites-A study of the literature-Part Ⅲ:Effects of thermal residual stresses[J]. Composites Part A, 2007(38):1581-1596. |