|
- 2019
纳米改性连续纤维增强热塑性树脂复合材料及其力学性能研究进展
|
Abstract:
连续纤维增强热塑性树脂复合材料(CFRTP)具有易加工、可回收、力学性能优异等特点,在航空航天、汽车等领域的应用前景良好。随着纳米技术的发展,研究者发现利用纳米材料改性CFRTP可显著提升其性能。本文对纳米材料改性CFRTP领域的最新研究进展进行了综述,首先对CFRTP改性中常用的纳米材料(如碳纳米管、石墨烯以及无机纳米颗粒)和主要的改性方法(包括树脂基体中直接添加纳米填料和利用纳米材料对增强相纤维表面进行修饰)进行了介绍,在此基础上总结并讨论了纳米改性对CFRTP力学性能(包括界面结合性能、拉伸性能、动态力学性能以及冲击性能)的影响,最后对纳米材料改性CFRTP的发展方向进行了展望。 Fiber reinforced thermoplastic composites (CFRTPs) are highly attractive in the fields of aerospace, automobile, and etc. due to their ease of fabrication, good recyclability and excellent mechanical properties. With the development of nanotechnology, it was found that nanomaterials, such as carbon nanotube, graphene and inorganic nanoparticles are effective to enhance the mechanical properties of CFRTPs. The recent development in the fabrication of nano-modified CFRTPs and their mechanical properties were reviewed in this paper. The two techniques for nano-modification of CFRTPs, including directly dispersing nanoparticles into thermoplastic matrix and modification of fibers with nanoparticles, were introduced. The effects of nanoparticle introduction on the mechanical properties including interfacial bonding properties, tensile/flexure properties, dynamic mechanical properties and impact properties of CFRTPs were analyzed. Finally, the challenges and outlook for nano-modification of CFRTPs were outlined. 国家自然科学基金(51573200
[1] | PARANDOUSH P, TUCKER L, ZHOU C, et al. Laser assisted additive manufacturing of continuous fiber reinforced thermoplastic composites[J]. Materials & Design, 2017, 131:186-195. |
[2] | ZHAO Z K, DU S S, LI F, et al. Mechanical and tribological properties of short glass fiber and short carbon fiber reinforced polyethersulfone composites:A comparative study[J]. Composites Communications, 2018, 8:1-6. |
[3] | YAO S S, JIN F L, RHEE K Y, et al. Recent advances in carbon-fiber-reinforced thermoplastic composites:A review[J]. Composites Part B:Engineering, 2018, 142:241-250. |
[4] | ZUO P, BENEVIDES R C, LARIBI M A, et al. Multi-scale analysis of the effect of loading conditions on monotonic and fatigue behavior of a glass fiber reinforced polyphenylene sulfide (PPS) composite[J]. Composites Part B:Engineering, 2018, 145:173-181. |
[5] | MIAO M, SHAN M. Highly aligned flax/polypropylene nonwoven preforms for thermoplastic composites[J]. Composites Science and Technology, 2011, 71(15):1713-1718. |
[6] | VIGNESH BABU R, KANAGARAJ S. Thermal, electrical and mechanical characterization of microwave sintered Copper/carbon nanotubes (CNT) composites against sintering duration, CNT diameter and its concentration[J]. Journal of Materials Processing Technology, 2018, 258:296-309. |
[7] | SPRENGER S, KOTHMANN M H, ALTSTAEDT V. Carbon fiber-reinforced composites using an epoxy resin matrix modified with reactive liquid rubber and silica nanoparticles[J]. Composites Science and Technology, 2014, 105:86-95. |
[8] | ZHANG S, LIU W B, HAO L F, et al. Preparation of carbon nanotube/carbon fiber hybrid fiber by combining electrophoretic deposition and sizing process for enhancing interfacial strength in carbon fiber composites[J]. Composites Science and Technology, 2013, 88:120-125. |
[9] | MA Y, YAN C, XU H, et al. Enhanced interfacial properties of carbon fiber reinforced polyamide 6 composites by grafting graphene oxide onto fiber surface[J]. Applied Surface Science, 2018, 452:286-298. |
[10] | ISLAM M S, DENG Y, TONG L, et al. Grafting carbon nanotubes directly onto carbon fibers for superior mechanical stability:Towards next generation aerospace composites and energy storage applications[J]. Carbon, 2016, 96:701-710. |
[11] | ANNU A, BHATTACHARYA B, SINGH P K, et al. Carbon nanotube using spray pyrolysis:Recent scenario[J]. Journal of Alloys and Compounds, 2017, 691:970-982. |
[12] | BERBER S, KWON Y K, TOMANEK D. Unusually high thermal conductivity of carbon nanotubes[J]. Physical Review Letters, 2000, 84(20):4613-4616. |
[13] | UNRAU C J, KATTA V R, AXELBAUM R L. Characterization of diffusion flames for synthesis of single-walled carbon nanotubes[J]. Combustion & Flame, 2010, 157(9):1643-1648. |
[14] | 练澎, 张小凤. 碳纳米管制备方法的研究进展[J]. 当代化工, 2015, 44(04):737-739. LIAN P, ZHANG X F. Research progress in preparation methods of carbon nanotubes[J]. Contemporary Chemical Industry, 2015, 44(04):737-739(in Chinese). |
[15] | LIU F, HU N, NING H, et al. Investigation on the interfacial mechanical properties of hybrid graphene-carbon nanotube/polymer nanocomposites[J]. Carbon, 2017, 115:694-700. |
[16] | STANKOVICH S, DIKIN D A, PINER R D, et al. Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide[J]. Carbon, 2007, 45(7):1558-1565. |
[17] | XIE Y, WEN L, ZHANG J, et al. Enhanced local controllable laser patterning of polymers induced by graphene/polystyrene composites[J]. Materials & Design, 2018, 141:159-169. |
[18] | 樊玮, 张超, 刘天西. 石墨烯/聚合物复合材料的研究进展[J]. 复合材料学报, 2013, 30(1):14-21. FAN W, ZHANG C, LIU T X. Recent progress in graphene/polymer composites[J]. Acta Materiae Compositae Sinica, 2013, 30(1):14-21(in Chinese). |
[19] | KANGO S, KALIA S, CELLI A, et al. Surface modification of inorganic nanoparticles for development of organic-inorganic nanocomposites-A review[J]. Progress in Polymer Science, 2013, 38(8):1232-1261. |
[20] | TIAN Y, ZHANG H, ZHANG Z. Influence of nanoparticles on the interfacial properties of fiber-reinforced-epoxy composites[J]. Composites Part A:Applied Science and Manufacturing, 2017, 98:1-8. |
[21] | 吴春蕾, 章明秋, 容敏智. 纳米SiO2表面接枝聚合改性及其聚丙烯基复合材料的力学性能[J]. 复合材料学报, 2002, 19(6):61-67. WU C L, ZHANG M Q, RONG M Z. Grafting polymerization onto nanosilica and its effect on mechanical properties of PP composites[J]. Acta Materiae Compositae Sinica, 2002, 19(6):61-67(in Chinese). |
[22] | CHUNG D D L. Processing-structure-property relationships of continuous carbon fiber polymer-matrix composites[J]. Materials Science and Engineering R:Reports, 2017, 113:1-29. |
[23] | CANO L, POLLET E, AVéROUS L, et al. Effect of TiO2 nanoparticles on the properties of thermoplastic chitosan-based nano-biocomposites obtained by mechanical kneading[J]. Composites Part A:Applied Science and Manufacturing, 2017, 93:33-40. |
[24] | OSTAFI AN'G SKA A, MIKE?OVá J, KREJ A? íKOVá S, et al. Thermoplastic starch composites with TiO2 particles:Preparation, morphology, rheology and mechanical properties[J]. International Journal of Biological Macromolecules, 2017, 101:273-282. |
[25] | ASHRAFI B, DíEZ-PASCUAL A M, JOHNSON L, et al. Processing and properties of PEEK/glass fiber laminates:Effect of addition of single-walled carbon nanotubes[J]. Composites Part A:Applied Science and Manufacturing, 2012, 43(8):1267-1279. |
[26] | DíEZ-PASCUAL A M, ASHRAFI B, NAFFAKH M, et al. Influence of carbon nanotubes on the thermal, electrical and mechanical properties of poly(ether ether ketone)/glass fiber laminates[J]. Carbon, 2011, 49(8):2817-2833. |
[27] | KIM B J, CHA S H, PARK Y B. Ultra-high-speed processing of nanomaterial-reinforced woven carbon fiber/polyamide 6 composites using reactive thermoplastic resin transfer molding[J]. Composites Part B:Engineering, 2018, 143:36-46. |
[28] | ZHANG R L, GAO B, MA Q H, et al. Directly grafting graphene oxide onto carbon fiber and the effect on the mechanical properties of carbon fiber composites[J]. Materials & Design, 2016, 93:364-369. |
[29] | ZHENG L, WANG Y, QIN J, et al. Scalable manufacturing of carbon nanotubes on continuous carbon fibers surface from chemical vapor deposition[J]. Vacuum, 2018, 152:84-90. |
[30] | RANGANATHAN N, OKSMAN K, NAYAK S K, et al. Structure property relation of hybrid biocomposites based on jute, viscose and polypropylene:The effect of the fibre content and the length on the fracture toughness and the fatigue properties[J]. Composites Part A:Applied Science and Manufacturing, 2016, 83:169-175. |
[31] | THOMASON J L. The influence of fibre length, diameter and concentration on the impact performance of long glass-fibre reinforced polyamide 6, 6[J]. Composites Part A:Applied Science and Manufacturing, 2009, 40(2):114-124. |
[32] | PEDRAZZOLI D, PEGORETTI A. Expanded graphite nanoplatelets as coupling agents in glass fiber reinforced polypropylene composites[J]. Composites Part A, 2014, 66(6):25-34. |
[33] | 马莉, 江晓禹, 裴永琪. 玻璃纤维单丝拔出实验及其有限元模拟[J]. 材料导报, 2011, 25(20):139-142. MA L, JIANG X Y, PEI Y Q. Simulation and anlysis of single fibreglass pull-out test with FEM[J]. Materials Review, 2011, 25(20):139-142(in Chinese). |
[34] | 杨斌, 章继峰, 梁文彦, et al. 玻璃纤维表面纳米SiO2改性对GF/PCBT复合材料力学性能的影响[J]. 复合材料学报, 2015, 32(03):691-698. YANG B, ZHANG J F, LIANG W Y, et al. Effect of glass fiber surface modified by nano-SiO2 on mechanical properties of GF/PCBT composites[J]. Acta Materiae Compositae Sinica, 2015, 32(03):691-698(in Chinese). |
[35] | 王翠翠, 程海涛, 羡瑜, et al. 纳米碳酸钙浸渍改性工艺对竹塑复合材料拉伸性能的影响[J]. 材料导报, 2016(2):61-65. WANG C C, CHENG H T, XIAN Y, et al. Effects of impregnation with nano-CaCO3 on tensile properties of bamboo-plastic composite[J]. Materials Review, 2016(2):61-65(in Chinese). |
[36] | HU D, XING Y, CHEN M, et al. Ultrastrong and excellent dynamic mechanical properties of carbon nanotube composites[J]. Composites Science and Technology, 2017, 141:137-144. |
[37] | ESKIZEYBEK V, ULUS H, KAYBAL H B, et al. Static and dynamic mechanical responses of CaCO3 nanoparticle modified epoxy/carbon fiber nanocomposites[J]. Composites Part B:Engineering, 2018, 140:223-231. |
[38] | 赖鹏辉. 纳米氧化铝/碳纤维多尺度增强聚酰胺基复合材料的制备工艺及力学性能[D]. 西安:西安建筑科技大学, 2017. NAI P H. Preparation and mechanical properties of nano alumina/carbon fiber multi-scale reinforced polyamide[D]. Xi'an:Xi'an University of Architecture and Technology, 2017(in Chinese). |
[39] | KIM Y A, KAMIO S, TAJIRI T, et al. Enhanced thermal conductivity of carbon fiber/phenolic resin composites by the introduction of carbon nanotubes[J]. Applied Physics Letters, 2007, 90(9). |
[40] | WU G, MA L, JIANG H, et al. Improving the interfacial strength of silicone resin composites by chemically grafting silica nanoparticles on carbon fiber[J]. Composites Science and Technology, 2017, 153:160-167. |
[41] | LANDOWSKI M, STRUGA?A G, BUDZIK M, et al. Impact damage in SiO2 nanoparticle enhanced epoxy-Carbon fibre composites[J]. Composites Part B:Engineering, 2017, 113:91-99. |
[42] | BUSSETTA P, CORREIA N. Numerical forming of continuous fibre reinforced composite material:A review[J]. Composites Part A:Applied Science and Manufacturing, 2018, 113:12-31. |
[43] | -->[4] KWON Y J, KIM Y, JEON H, et al. Graphene/carbon nanotube hybrid as a multi-functional interfacial reinforcement for carbon fiber-reinforced composites[J]. Composites Part B:Engineering, 2017, 122:23-30. |
[44] | 钟明强, 益小苏, JACOBS O. 短碳纤维增强注塑聚醚醚酮复合材料微观结构与力学性能研究[J]. 复合材料学报, 2002(01):12-16. ZHONG M Q, YI X S, JACOBS O. Microstructure and mechancial properties of short carbon fiber reinforced injection-molded PEEK composites[J]. Acta Materiae Compositae Sinica, 2002(01):12-16(in Chinese). |
[45] | CHEN J, WANG K, ZHAO Y. Enhanced interfacial interactions of carbon fiber reinforced PEEK composites by regulating PEI and graphene oxide complex sizing at the interface[J]. Composites Science and Technology, 2018, 154:175-186. |
[46] | 宋清华, 肖军, 文立伟, et al. 热塑性复合材料自动纤维铺放装备技术[J]. 复合材料学报, 2016, (6):1214-1222. SONG Q H, XIAO J, WEN L W, et al. Automated fiber placement system technology for thermoplastic composites[J] Acta Materiae Compositae Sinica, 2016, (6):1214-1222(in Chinese). |
[47] | EBBESEN T W, LEZEC H J, HIURA H, et al. Electrical conductivity of individual carbon nanotubes[J]. Nature, 1996, 382:54. |
[48] | JINGYI W, HONGBING J, LIFENG D, et al. Utilization of silane functionalized carbon nanotubes-silica hybrids as novel reinforcing fillers for solution styrene butadiene rubber[J]. Polymer Composites, 2013, 34(5):690-696. |
[49] | ZABIHI O, AHMADI M, LI Q, et al. Carbon fibre surface modification using functionalized nanoclay:A hierarchical interphase for fibre-reinforced polymer composites[J]. Composites Science and Technology, 2017, 148:49-58. |
[50] | SHEHAYEB S, DESCHANELS X, KARAMé I, et al. Spectrally selective coatings obtained from electrophoretic deposition of CuO nanoparticles[J]. Surface and Coatings Technology, 2017, 322:38-45. |
[51] | MA Y, HAN J, WANG M, et al. Electrophoretic deposition of graphene-based materials:A review of materials and their applications[J]. Journal of Materiomics, 2018, 4(2):108-120. |
[52] | SU Y, ZHANG S, ZHANG X, et al. Preparation and properties of carbon nanotubes/carbon fiber/poly (ether ether ketone) multiscale composites[J]. Composites Part A:Applied Science and Manufacturing, 2018, 108:89-98. |
[53] | QIAN H, BISMARCK A, GREENHALGH E S, et al. Carbon nanotube grafted carbon fibres:A study of wetting and fibre fragmentation[J]. Composites Part A:Applied Science and Manufacturing, 2010, 41(9):1107-1114. |
[54] | SONG S A, LEE C K, BANG Y H, et al. A novel coating method using zinc oxide nanorods to improve the interfacial shear strength between carbon fiber and a thermoplastic matrix[J]. Composites Science & Technology, 2016, 134:106-114. |
[55] | YU F, HUANG H-X. Simultaneously toughening and reinforcing poly(lactic acid)/thermoplastic polyurethane blend via enhancing interfacial adhesion by hydrophobic silica nanoparticles[J]. Polymer Testing, 2015, 45:107-113. |
[56] | AGNIHOTRI P, BASU S, KAR K K. Effect of carbon nanotube length and density on the properties of carbon nanotube-coated carbon fiber/polyester composites[J]. Carbon, 2011, 49(9):3098-3106. |
[57] | 张玲, 杨建民, 冯超伟, 等. 表面复合纳米SiO2和碳纳米管玻璃纤维增强尼龙6的结构与性能[J]. 高分子学报, 2010(11):1333-1339. ZHANG L, YANG J M, FENG C W, et al. Structure and performance of polymide 6 composites reinforced by glass fiber compounded with nano-SiO2 or carbon nanotubes[J]. Acta Polymerica Sinica, 2010(11):1333-1339(in Chinese). |
[58] | ZHANG Y, TAO W, ZHANG Y, et al. Continuous carbon fiber/crosslinkable poly(ether ether ketone) laminated composites with outstanding mechanical properties, robust solvent resistance and excellent thermal stability[J]. Composites Science and Technology, 2018, 165:148-153. |
[59] | KIM D H, LEE W I, FRIEDRICH K. A model for a thermoplastic pultrusion process using commingled yarns[J]. Composites Science and Technology, 2001, 61(8):1065-1077. |
[60] | PULCI G, PAGLIA L, GENOVA V, et al. Low density ablative materials modified by nanoparticles addition:Manufacturing and characterization[J]. Composites Part A:Applied Science and Manufacturing, 2018, 109:330-337. |
[61] | ARAO Y, YUMITORI S, SUZUKI H, et al. Mechanical properties of injection-molded carbon fiber/polypropylene composites hybridized with nanofillers[J]. Composites Part A:Applied Science and Manufacturing, 2013, 55:19-26. |
[62] | 陈卫祥, 陈文录, 徐铸德, et al. 碳纳米管的特性及其高性能的复合材料[J]. 复合材料学报, 2001, 18(4):1-5. CHEN W X, CHEN W L, XU Z D, et al. Characteristics of carbon nanotubes and high-quality composites[J]. Acta Materiae Compositae Sinica, 2001, 18(4):1-5(in Chinese). |
[63] | FEI G, GONG Q, LI D, et al. Relationship between electrical conductivity and spatial arrangements of carbon nanotubes in polystyrene nanocomposites:The effect of thermal annealing and plasticization on electrical conductivity[J]. Composites Science and Technology, 2017, 146:99-109. |
[64] | EBBESEN T W, LEZEC H J, HIURA H, et al. Electrical conductivity of individual carbon nanotubes[J]. Nature, 1996, 382(6586):54-56. |
[65] | ZHOU B, LUO W, YANG J, et al. Thermal conductivity of aligned CNT/polymer composites using mesoscopic simulation[J]. Composites Part A:Applied Science & Manufacturing, 2016, 90:410-416. |
[66] | CHEN X, FANG C Q, WANG X. The influence of surface effect on vibration behaviors of carbon nanotubes under initial stress[J]. Physica E:Low-dimensional Systems and Nanostructures, 2017, 85:47-55. |
[67] | ESAWI A M K, FARAG M M. Carbon nanotube reinforced composites:Potential and current challenges[J]. Materials & Design, 2007, 28(9):2394-2401. |
[68] | VALIZADEH M, KAZEMZADEH A, RAISIAN M, et al. Development of sol-gel process for synthesis of single-walled carbon nanotubes[J]. Asian Journal of Chemistry, 2007, 19(2):1246-1250. |
[69] | 陈效. 多壁碳纳米管和富勒烯碳60对星形胶质细胞功能的差异性影响[D]. 武汉:华中科技大学, 2010. CHEN X, Differential effects of multiwalled carbon nanotubes and fullerene C60 on in vitro astroglial cells[D]. Wuhan:Huazhong University of Science and Technology, 2010(in Chinese). |
[70] | LEE C, WEI X, KYSAR J W, et al. Measurement of the elastic properties and intrinsic strength of monolayer graphene[J]. Science, 2008, 321(5887):385-388. |
[71] | NOVOSELOV K S, GEIM A K, MOROZOV S V, et al. Electric field effect in atomically thin carbon films[J]. Science, 2004, 306(5696):666-669. |
[72] | GONZALEZ-CHI P I, RODRíGUEZ-UICAB O, MARTIN-BARRERA C, et al. Influence of aramid fiber treatment and carbon nanotubes on the interfacial strength of polypropylene hierarchical composites[J]. Composites Part B:Engineering, 2017, 122:16-22. |
[73] | 周宏明, 曾鳞, 易丹青, et al. 电泳沉积制备BG/BG-FHA复合涂层[J]. 复合材料学报, 2011, 28(6):194-199. ZHOU H M, ZENG L, YI D Q, et al. BG/BG-FHA composite coatings prepared by electrophpretic deposition method[J]. Acta Materiae Compositae Sinica, 2011, 28(6):194-199(in Chinese). |
[74] | WAN X, FAN Y, MA W, et al. One-step synthesis of nano-silicon/graphene composites using thermal plasma approach[J]. Materials Letters, 2018, 220:144-147. |
[75] | WU Z S, ZHOU G, YIN L C, et al. Graphene/metal oxide composite electrode materials for energy storage[J]. Nano Energy, 2012, 1(1):107-131. |
[76] | LEE S Y, SHIN H K, PARK M, et al. Thermal characterization of erythritol/expanded graphite composites for high thermal storage capacity[J]. Carbon, 2014, 68:67-72. |
[77] | VLASVELD D P N, DAUD W, BERSEE H E N, et al. Continuous fibre composites with a nanocomposite matrix:Improvement of flexural and compressive strength at elevated temperatures[J]. Composites Part A:Applied Science and Manufacturing, 2007, 38(3):730-738. |
[78] | MARRIAM I, XU F, TEBYETEKERWA M, et al. Synergistic effect of CNT films impregnated with CNT modified epoxy solution towards boosted interfacial bonding and functional properties of the composites[J]. Composites Part A:Applied Science and Manufacturing, 2018, 110:1-10. |
[79] | ⅡJIMA S. Helical microtubules of graphitic carbon[J]. Nature, 1991, 354(6348):56-58. |
[80] | SCOTT C D, AREPALLI S, NIKOLAEV P, et al. Growth mechanisms for single-wall carbon nanotubes in a laser-ablation process[J]. Applied Physics A, 2001, 72(5):573-580. |
[81] | LI X, TAO L, CHEN Z, et al. Graphene and related two-dimensional materials:Structure-property relationships for electronics and optoelectronics[J]. Applied Physics Reviews, 2017, 4(2):666. |
[82] | AFSHARI F, GHAFFARIAN M. Electronic properties of zigzag and armchair graphene nanoribbons in the external electric and magnetic fields[J]. Physica E:Low-dimensional Systems and Nanostructures, 2017, 89:86-92. |
[83] | WU Q, ZHAO R, LIU Q, et al. Simultaneous improvement of interfacial strength and toughness between carbon fiber and epoxy by introducing amino functionalized ZrO2 on fiber surface[J]. Materials & Design, 2018, 149:15-24. |
[84] | TIWARI S, BIJWE J, PANIER S. Role of nano-YbF 3-treated carbon fabric on improving abrasive wear performance of polyetherimide composites[J]. Tribology Letters, 2011, 42(3):293. |