This paper reviews the adaption to heat and drought stresses in Phaseolus vulgaris, a grain and vegetable crop widely grown in both the Old and New World. Substantial genotypic differences are found in morphophysiological characteristics such as phenology, partitioning, plant-water relations, photosynthetic parameters, and shoot growth, which are related to reproductive responses. The associations between (a) days to podding and leaf water content and (b) the number of pods per plant and seed yield are consistent across different environments and experiments. Leaf water content is maintained by reductions in leaf water potential and shoot extension in response to heat and drought stress. Heat-tolerant cultivars have higher biomass allocation to pods and higher pod set in branches. These traits can be used as a marker to screen germplasm for heat and drought tolerance. In this paper, we briefly review the results of our studies carried out on heat and drought tolerance in the common bean at the Tropical Agriculture Research Front, Ishigaki, Japan. 1. Introduction Transitory or constantly high temperatures cause an array of morphoanatomical, physiological, and biochemical changes in plants, which affect plant growth and development and may lead to a drastic reduction in economic yield. The adverse effects of heat stress can be mitigated by developing crop plants with improved thermotolerance using various genetic approaches [1]. However, achieving this requires a thorough understanding of the physiological responses of plants to high temperature, the mechanisms of heat tolerance, and potential strategies for improving crop thermotolerance. The common bean (Phaseoluls vulgaris L.) is originally a crop of the New World [2], but it is now grown extensively in all major continental areas [3]. Its production spans from 52°N to 32°S latitude [4] and from near sea level in the continental US and Europe to elevations of more than 3000?m in Andean South America. The common bean has two major gene pools [5], the Andean and the Mesoamerican, based on their centers of origin in South and Central America, respectively [6]. Within these gene pools are a total of six races, including three Mesoamerican (Mesoamerica, Durango, and Jalisco) and three Andean (Peru, Nueva Granada, and Chile) [7, 8]. An additional Mesoamerican race has been designated Guatemala, which includes certain climbing beans from Central America [9]. After domestication, the common bean spread across Mesoamerica and South America and, after the European discovery of the Americas, to Europe and Africa,
References
[1]
A. Wahid, S. Gelani, M. Ashraf, and M. R. Foolad, “Heat tolerance in plants: an overview,” Environmental and Experimental Botany, vol. 61, no. 3, pp. 199–223, 2007.
[2]
H. S. Gentry, “Origin of the common bean, Phaseolus vulgaris,” Economic Botany, vol. 23, no. 1, pp. 55–69, 1969.
[3]
J. ?ustar-Vozli?, M. Maras, B. Javornik, and V. Megli?, “Genetic diversity and origin of slovene common bean (Phaseolus vulgaris L.) germplasm as revealed by AFLP markers and phaseolin analysis,” Journal of the American Society for Horticultural Science, vol. 131, no. 2, pp. 242–249, 2006.
[4]
A. V. Schoonhoven and O. Voysest, Common Beans: Research for Crop Improvement, CIAT, Cali, Colombia, 1991.
[5]
M. W. Blair, M. C. Giraldo, H. F. Buendía, E. Tovar, M. C. Duque, and S. E. Beebe, “Microsatellite marker diversity in common bean (Phaseolus vulgaris L.),” Theoretical and Applied Genetics, vol. 113, no. 1, pp. 100–109, 2006.
[6]
P. Gepts and D. Debouck, “Origin, domestication, and evolution of the common bean (Phaseolus vulgaris L.),” in Common Beans: Research for Crop Improvement, A. V. Schoonhoven, Ed., pp. 7–53, CIAT, Calif, USA, 1991.
[7]
S. P. Singh, P. Gepts, and D. G. Debouck, “Races of common bean (Phaseolus vulgaris, Fabaceae),” Economic Botany, vol. 45, no. 3, pp. 379–396, 1991.
[8]
S. P. Singh, R. Nodari, and P. Gepts, “Genetic diversity in cultivated common bean—I. Allozymes,” Crop Science, vol. 31, pp. 19–23, 1991.
[9]
S. Beebe, P. W. Skroch, J. Tohme, M. C. Duque, F. Pedraza, and J. Nienhuis, “Structure of genetic diversity among common bean landraces of Middle American origin based on correspondence analysis of RAPD,” Crop Science, vol. 40, no. 1, pp. 264–273, 2000.
[10]
M. I. Chacón S, B. Pickersgill, and D. G. Debouck, “Domestication patterns in common bean (Phaseolus vulgaris L.) and the origin of the Mesoamerican and Andean cultivated races,” Theoretical and Applied Genetics, vol. 110, no. 3, pp. 432–444, 2005.
[11]
P. H. Graham and P. Ranalli, “Common bean (Phaseolus vulgaris L.),” Field Crops Research, vol. 53, no. 1–3, pp. 131–146, 1997.
[12]
J. A. Acosta-Gallegos and M. W. Adams, “Plant traits and yield stability of dry bean (Phaseolus vulgaris L.) cultivars under drought stress,” Journal of Agricultural Science, vol. 117, pp. 213–219, 1991.
[13]
E. F. Foster, A. Pajarito, and J. Acosta-Gallegos, “Moisture stress impact on N partitioning, N remobilization and N-use efficiency in beans (Phaseolus vulgaris L.),” Journal of Agricultural Science, vol. 124, no. 1, pp. 27–37, 1995.
[14]
J. A. Acosta Gallegos and J. Kohashi Shibata, “Effect of water stress on growth and yield of indeterminate dry-bean (Phaseolus vulgaris) cultivars,” Field Crops Research, vol. 20, no. 2, pp. 81–93, 1989.
[15]
J. A. Acosta-Gallegos, R. Ochoa-Marquez, M. P. Arrieta-Montiel, et al., “Registration of Pinto Villa common bean,” Crop Science, vol. 35, p. 1211, 1989.
[16]
K. A. Schneider, R. Rosales-Serna, F. Ibarra-Perez et al., “Improving common bean performance under drought stress,” Crop Science, vol. 37, no. 1, pp. 43–50, 1997.
[17]
J. S. Beaver, J. C. Rosas, J. Myers et al., “Contributions of the Bean/Cowpea CRSP to cultivar and germplasm development in common bean,” Field Crops Research, vol. 82, no. 2-3, pp. 87–102, 2003.
[18]
J. C. Rosas, A. Castro, J. S. Beaver, C. A. Perez, A. Morales, and R. Lepiz, “Mejoramiento genetico para tolerancia a altas temperaturas y Resistencia a mosaico dorado en frijol comun,” Agronomia Mesoamericana, vol. 11, no. 1, pp. 1–10, 2000.
[19]
J. C. Rosas, J. C. Hermandez, and J. A. Castro, “Registration of “Bribri” small red bean(race Mesoamerica),” Crop Science, vol. 43, pp. 430–431, 2003.
[20]
A. Kumar, H. Omae, Y. Egawa, K. Kashiwaba, and M. Shono, “Adaptation to heat and drought stresses in snap bean (Phaseolus vulgaris) during the reproductive stage of development,” Japan Agricultural Research Quarterly, vol. 40, no. 3, pp. 213–216, 2006.
[21]
H. Nakano, M. Kobayashi, and T. Terauchi, “Sensitive stages to heat stress in pod setting of common bean (Phaseolus vulgaris L.),” Japanese Journal of Tropical Agriculture, vol. 42, pp. 78–84, 1998.
[22]
H. Nakano, M. Kobayashi, and T. Terauchi, “Heat acclimation and de-acclimation for pod setting in heat-tolerant varieties of common bean (Phaseolus vulgaris L.),” Japanese Journal of Tropical Agriculture, vol. 44, pp. 123–129, 2000.
[23]
K. Suzuki, T. Tsukaguchi, H. Takeda, and Y. Egawa, “Decrease of pollen stainability of green bean at high temperatures and relationship to heat tolerance,” Journal of the American Society for Horticultural Science, vol. 126, no. 5, pp. 571–574, 2001.
[24]
T. Tsukaguchi, Y. Kawamitsu, H. Takeda, K. Suzuki, and Y. Egawa, “Water status of flower buds and leaves as affected by high temperature in heat-tolerant and heat-sensitive cultivars of snap bean (Phaseolus vulgaris L.),” Plant Production Science, vol. 6, no. 1, pp. 24–27, 2003.
[25]
H. Nakano, T. Momonoki, T. Miyashige, et al., “Haibushi, a new variety of snap bean tolerant to heat stress,” JIRCAS Journal, vol. 5, pp. 1–12, 1997.
[26]
F. E. Ahmed, A. E. Hall, and D. A. Demason, “Heat injury during floral development in cowpea (Vigna unguiculata, Favaceae),” American Journal of Botany, vol. 79, pp. 784–791, 1992.
[27]
I. Konsens, M. Ofir, and J. Kigel, “The effect of temperature on the production and abscission of flowers and pods in snap bean (Phaseolus vulgaris L.),” Annals of Botany, vol. 67, no. 5, pp. 391–399, 1991.
[28]
V. A. Monterroso and H. C. Wien, “Flower and pod abscission due to heat stress in beans,” Journal of American society for Horticultural Science, vol. 115, pp. 631–634, 1990.
[29]
M. L. Weaver and H. Timm, “Influence of temperature and plant water status on pollen fertility in beans,” Journal of American Society for Horticultural Science, vol. 113, pp. 31–35, 1988.
[30]
J. H. Anthony, D. C. Carl, and D. T. Iwan, “Influence of high temperature on pollen grain viability and pollen tube growth in the styles of Phaseolus vulgaris L,” Journal of American Society for Horticultural Science, vol. 105, pp. 12–14, 1980.
[31]
A. J. Halterlein, C. D. Clayberg, and I. D. Teare, “Influence of high temperature on pollen grain viability and pollen tube growth in the styles of Phaseolus vulgaris L,” American Society for Horticultural Science, vol. 105, pp. 12–14, 1980.
[32]
Y. Gross and J. Kigel, “Differential sensitivity to high temperature of stages in the reproductive development of common bean (Phaseolus vulgaris L.),” Field Crops Research, vol. 36, no. 3, pp. 201–212, 1994.
[33]
D. P. Ormrod, C. J. Wooley, G. W. Eaton, and E. H. Stobbe, “Effect of temperature on embryo sac development in Phaseolus vulgaris L,” Canadian Journal of Botany, vol. 44, pp. 948–950, 1967.
[34]
K. Suzuki, H. Takeda, T. Tsukaguchi, and Y. Egawa, “Ultrastructural study on degeneration of tapetum in anther of snap bean (Phaseolus vulgaris L.) under heat stress,” Sexual Plant Reproduction, vol. 13, no. 6, pp. 293–299, 2000.
[35]
M. L. Weaver, H. Timm, M. J. Silbernagel, and D. W. Burke, “Pollen staining and high-temperature tolerance of bean,” Journal of American Society for Horticultural Science, vol. 110, pp. 797–799, 1985.
[36]
G. E. Marks, “An aceto-carmine glycerol jelly for use in pollen-fertility counts,” Stain Technology, vol. 29, no. 5, p. 277, 1954.
[37]
M. Takagaki, M. Kakinuma, S. You, and T. Ito, “Effect of temperature on pollen fertility and pollen germination of three pepper (Capsicum annunum L.) varieties,” Japanese Journal of Tropical Agriculture, vol. 39, pp. 247–249, 1995 (Japanese).
[38]
H. Watanabe, “Studies on the unfruitfulness of the beans—II. Influence of the temperature on the flower bud differentiation and blooming,” Journal of Japanese Journal for Horticultural Science, vol. 22, pp. 36–42, 1953 (Japanese).
[39]
Y. J. Ahn, K. Claussen, and J. L. Zimmerman, “Genotypic differences in the heat-shock response and thermotolerance in four potato cultivars,” Plant Science, vol. 166, no. 4, pp. 901–911, 2004.
[40]
A. Bar-Tsur, J. Rudich, and B. Bravdo, “High temperature effects on CO2 gas exchange in heat-tolerant and sensitive tomatoes,” Journal of American Society for Horticultural Science, vol. 110, pp. 582–586, 1985.
[41]
T. G. Ranney and M. M. Peet, “Heat tolerance of five taxa of birch (Betula): physiological responses to supraoptimal leaf temperatures,” Journal of the American Society for Horticultural Science, vol. 119, no. 2, pp. 243–248, 1994.
[42]
S. Suzuki, K. Yamada, and T. Takano, “Effect of succinic acid 2, 2-dimethylhydrazide on drought tolerance of bean plant,” Science Report, vol. 23, pp. 15–22, 1987.
[43]
R. Rosales-Serna, J. Kohashi-Shibata, J. A. Acosta-Gallegos, C. Trejo-López, J. Ortiz-Cereceres, and J. D. Kelly, “Biomass distribution, maturity acceleration and yield in drought-stressed common bean cultivars,” Field Crops Research, vol. 85, no. 2-3, pp. 203–211, 2004.
[44]
R. V. Porfirio and D. K. James, “Traits related to drought resistance in common bean,” Euphytica, vol. 99, no. 2, pp. 127–136, 1998.
[45]
H. Omae, A. Kumar, Y. Egawa, K. Kashiwaba, and M. Shono, “Water consumption in different heat tolerant cultivars of snap bean (Phaseolus vulgaris L.),” in Proceedings of the 4th International Crop Science Congress, vol. 1.3.4, 2004.
[46]
T. Tsukaguchi, H. Fukamachi, K. Ozawa, H. Takeda, K. Suzuki, and Y. Egawa, “Diurnal change in water balance of heat-tolerant snap bean (Phaseolus vulgaris) cultivar and its association with growth under high temperature,” Plant Production Science, vol. 8, no. 4, pp. 375–382, 2005.
[47]
A. Kumar, H. Omae, Y. Egawa, K. Kashiwaba, and M. Shono, “Some physiological responses of snap bean (Phseolus vulgaris L.) to water stress during reproductive period,” in Proceedings of the International Conference on Sustainable Crop Production in Stress Environment: Management and Genetic Option, pp. 226–227, JNKVV, Jabarpur, India, 2005.
[48]
A. Kumar, P. Singh, D. P. Singh, H. Singh, and H. C. Sharma, “Differences in osmoregulation in Brassica species,” Annals of Botany, vol. 54, no. 4, pp. 537–542, 1984.
[49]
T. R. Sinclair and M. M. Ludlow, “Who taught plants thermodynamics? The unfulfilled potential of plant water potential,” Australian Journal of Plant Physiology, vol. 12, pp. 213–217, 1985.
[50]
H. Omae, A. Kumar, K. Kashiwaba, and M. Shono, “Genotypic differences in plant water status and relationship with reproductive responses in snap bean (Phaseolus vulgaris L.) during water stress,” Japanese Journal of Tropical Agriculture, vol. 49, pp. 1–7, 2005.
[51]
A. Kumar, H. Omae, Y. Egawa, K. Kashiwaba, and M. Shono, “Influence of water and high temperature stresses on leaf water status of high temperature tolerant and sensitive cultivars of snap bean (Phaseolus vulgaris L.),” Japanese Journal of Tropical Agriculture, vol. 49, pp. 109–118, 2005.
[52]
H. Omae, A. Kumar, K. Kashiwaba, and M. Shono, “Influence of level and duration of high temperature treatments on plant water status in snap bean (Phaseolus vulgaris L.),” Japanese Journal of Tropical Agriculture, vol. 49, pp. 238–242, 2005.
[53]
A. Kumar and J. Elston, “Genotypic differences in leaf water relations between Brassica juncea and B. napus,” Annals of Botany, vol. 70, no. 1, pp. 3–9, 1992.
[54]
A. Kumar and D. P. Singh, “Use of physiological indices as a screening technique for drought tolerance in oilseed Brassica species,” Annals of Botany, vol. 81, no. 3, pp. 413–420, 1998.
[55]
H. Omae, A. Kumar, Y. Egawa, K. Kashiwaba, and M. Shono, “Midday drop of leaf water content related to drought tolerance in snap bean (Phaseolus vulgaris L.),” Plant Production Science, vol. 8, no. 4, pp. 465–467, 2005.
[56]
J. M. Morgan, R. A. Hare, and R. J. Fletcher, “Genetic variation in osmoregulation in bread and durum wheats and its relationship to grain yield in a range of field environments,” Australian Journal of Agricultural Research, vol. 37, pp. 449–457, 1986.
[57]
S. W. Ritchie, H. T. Nguyen, and A. S. Holaday, “Leaf water content and gas-exchange parameters of two wheat genotypes differing in drought resistance,” Crop Science, vol. 30, pp. 105–111, 1990.
[58]
P. I. Coyne, J. A. Bradford, and C. I. Dewald, “Leaf water relations and gas exchange in relation to forage production in four Asiatic blue stems,” Crop Science, vol. 22, pp. 1036–1040, 1982.
[59]
H. Omae, A. Kumar, K. Kashiwaba, and M. Shono, “Assessing drought tolerance of snap bean (Phaseolus vulgaris) from genotypic differences in leaf water relations, shoot growth and photosynthetic parameters,” Plant Production Science, vol. 10, no. 1, pp. 28–35, 2007.
[60]
H. Omae, A. Kumar, K. Kashiwaba, and M. Shono, “Influence of temperature shift after flowering on dry matter partitioning in two cultivars of snap bean (Phaseolus vulgaris) that differ in heat tolerance,” Plant Production Science, vol. 10, no. 1, pp. 14–19, 2007.
[61]
H. Omae, A. Kumar, K. Kashiwaba, and M. Shono, “Influence of high temperature on morphological characters, biomass allocation, and yield components in snap bean (Phaseolus vulgaris L.),” Plant Production Science, vol. 9, no. 3, pp. 200–205, 2006.