全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2019 

Quantum Mechanics by General Relativity | Light | Applied Physics Research | CCSE

DOI: 10.5539/apr.v11n2p1

Full-Text   Cite this paper   Add to My Lib

Abstract:

In the framework of General Relativity we explain the creation of all particles, ordinary and anti, in two chiral directions, with multiple generations, as well as electromagnetism and the strong nuclear force. Quantum mechanics is well-known to have its foundational problems revolving around the wave-particle duality, which actually has an exact solution, viz., a diagonal spacetime manifold that admits any particle of energy coupled with its wave of energy co-existing at the same spacetime (t + it, x + iy, y + iz, z + ix). I.e., a photon can travel along x = ct with its associated electromagnetic wave spinning from y to z in circular motion as (y = cos t, z = sin t) ≡ eit. The construct of diagonal manifold, seemingly artificial, is fundamental in differential topology as it leads to the Euler characteristic. That Nature is inherently of duality cannot have a more evident example than that of the complex number x + iy, where 1 implies a linear motion in R and i = eπ2 i implies a circular motion along S 1. That the quantum wave itself possesses energy can be argued simply as: wave = probability = frequency = energy by Planck’s formula. By assigning energy entirely to particle, quantum mechanics has missed an entire copy of the Universe (the wave universe treated as the quantum vacuum)

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133