全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Probing Slip Differential Heat of Magnetorheological Fluids Subjected to Shear Mode Operation and Its Effect on the Structure

DOI: https://doi.org/10.3390/ma12111860

Full-Text   Cite this paper   Add to My Lib

Abstract:

The paper probes slip differential heat of magnetorheological fluids (MRFs) subjected to shear mode operation and its effect on the structure. To begin, we present a novel model for measurement of slip differential heat to describe temperature rise of MRFs mainly caused by friction between magnetorheological particles. It includes two stages: (1) The micro-macro analysis of slip differential heat of MRFs including force, movement and heat between neighboring particles based on magnetic dipole and Hertzian contact theories, and (2) the further application to two basic disc-type and cylinder-type magnetorheological clutches combined with finite element simulations involving electromagnetic field and thermal analysis. The model takes into account the effect of each of the main influencing factors, such as the input current of excitation coil, the rotational speed difference of the clutches, the size and volume fraction of particles, the saturation magnetization of particles, and the structural size of the clutches, etc., on the slip differential heat of MRFs. Then the thermal structure analysis of MRFs comprising thermal deformation and equivalent thermal stress is carried out. Moreover, the effect of typical governing parameters on the slip power of MRFs and the influence of slip differential heat on the structure of MRFs are investigated individually. We show that such a model is effective in reflecting the temperature-slip time relation of MRFs. It is shown that the input current and the rotational speed difference have great effect on the slip power, and the slip differential heat has a certain influence on the micro-structure of MRFs. View Full-Tex

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133