全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  1996 

适应噪声环境的解释学习算法

Keywords: 解释学习 噪声 模式识别

Full-Text   Cite this paper   Add to My Lib

Abstract:

在现实世界里,AI系统难免受到噪声的影响.系统有效工作与否取决于它对噪声的敏感性如何.解释学习EBL(explanation-basedlearning)也不例外.本文探讨了在例子受到噪声影响的情况下,解释学习的处理问题,提出了一个算法NR-EBL(noise-resistantEBL).与现有的解释学习方法不同,NR-EBL在训练例子含有噪声时仍然可以学习,以掌握实际的问题分布;和类似的工作不同,NR-EBL指出了正确识别概念对于噪声规律的依赖性,试图从训练例子集合发现和掌握噪声的规律.可以相信,在识别概念时,借助于对噪声规律的认识,NR-EBL可比EBL和类似工作有更高的识别率.NR-EBL是解释学习和统计模式识别思想的结合.它把现有的解释学习模型推广到例子含有噪声的情形,原来的EBL算法只是它的特例

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133