全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2017 

基于车牌识别流数据的车辆伴随模式发现方法

DOI: 10.13328/j.cnki.jos.005220

Keywords: 流式时空大数据 大数据分析 伴随模式 频繁序列挖掘

Full-Text   Cite this paper   Add to My Lib

Abstract:

针对伴随车辆检测这一新兴的智能交通应用,在一种特殊的流式时空大数据??车牌识别流式大数据(ANPR)下,重新定义了Platoon伴随模式,提出PlatoonFinder算法,即时地在车牌识别数据流上挖掘Platoon伴随模式.主要贡献包括:第一,将Platoon伴随模式发现问题映射为数据流上的带有时空约束的频繁序列挖掘问题,与传统频繁序列挖掘算法仅考虑序列元素之间位置关系不同,该算法能够在频繁序列挖掘的过程中有效处理序列元素之间复杂的时空约束关系;第二,该算法融入了伪投影等性能优化技术,针对数据流的特点进行了性能优化,能够有效应对车牌识别流式大数据的速率和规模,从而实现车辆Platoon伴随模式的即时发现.通过在真实车牌识别数据集上的实验分析表明:PlatoonFinder算法的平均延时显著低于经典的Aprior和PrefixSpan等频繁模式挖掘算法,也低于真实情况下交通摄像头的车牌识别最小时间间隔.因此,所提出的算法可以有效地发现伴随车辆组及其移动模式

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133