全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2013 

多层核心集凝聚算法

DOI: 10.3724/SP.J.1001.2013.04322

Keywords: 多层 核心集 凝聚 大规模

Full-Text   Cite this paper   Add to My Lib

Abstract:

许多经典的聚类算法,如平均链接,K-means,K-medoids,Clara,Clarans等,都是利用单一的聚类中心进行聚类.为克服单一聚类中心只能描述凸状聚类的缺陷,CURE,DBSCAN等算法使用多个代表点(或稠密点)表述任意形状的聚类结构,但仍难以聚类重叠和噪声数据.为此,提出一种基于多层聚类中心(称为核心集)的凝聚聚类算法(MulCA).该算法使用了多层核心集表述聚类结构,使得每一层数据集向其核心集凝聚.同时,上层的核心集自动成为下层的数据集.随着每层核心集规模按α比例迅速减少,控制了凝聚过程的迭代次数.此外,引入了基于随机采样计算ε-核心集(RBC)的技巧,将MulCA算法应用于大规模数据集.大量的数值实验充分验证了MulCA算法的有效性

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133