全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

The Effect of NaCl and CMA on the Growth and Morphology of Arctostaphylos uva-ursi (Kinnikinnick)

DOI: 10.1155/2012/789879

Full-Text   Cite this paper   Add to My Lib

Abstract:

Numerous studies have described the negative effects of the commonly used deicer, NaCl, on plants; this has led to research on less toxic alternatives, for example, calcium magnesium acetate (CMA). The present research investigated the native ground cover species, Arctostaphylos uva-ursi (kinnikinnick), as a possible candidate for landscaping in high salt conditions. The effect of NaCl and CMA on the growth, morphology, and survival of A. uva-ursi plants was examined to explore the use of CMA as a potential environmentally friendly alternative deicing agent to that of NaCl. The influence of these deicing agents on selected soil properties was also investigated. It was found that this ground cover species was able to tolerate moderate-to-high levels of NaCl and even greater concentrations of CMA. Therefore, A. uva-ursi proved to be a candidate for landscaping use in a north central city of Canada, where deicing agents are used in winter months. 1. Introduction Chemical deicing agents are widely applied to roads in cold climates to keep pavement surfaces bare during winter months. Typical application rates of NaCl, the most common deicer in North America, are in the order of tens of Mg?yr?1?km?1 of road [1]. These salts may enter the surrounding environment in a variety of ways. For example, road deicers may be directly applied to nontarget areas, or, they may move into nontarget areas through the plowing or transport of salt-impacted snow and ice. Dissolved salts in road spray and in snow and ice melt waters may also move from applications into the environment. These salts commonly impact road-side soils, fauna, and vegetation; dissolved salts in snowmelt runoff may also enter and degrade surface water and ground water systems [1, 2]. The negative effects of NaCl on roadside and landscaping trees and shrubs are well documented [3–7]. Dissolved salt ions from chemical deicers (e.g., Na+, Cl?) can cause osmotic stress in plants [8, 9]. Soil salinity can interfere with root uptake of both water and nutrients [10], and accumulation of salt ions can cause toxicity in leaves [9], and reduce both frost hardiness [11] and drought tolerance [12]. Salts can also be deposited as spray on leaves, stems, and buds, resulting in external damage, including leaf browning, twig dieback, and slow or no-bud flushing [13], and killing of floral buds [14]. In addition, movement of deicing salts away from application areas can negatively impact aquatic ecosystems, causing degradation of habitat for aquatic organisms and impact drinking water supplies for humans [15]. Despite

References

[1]  J. M. Buttle and C. F. Labadia, “Deicing salt accumulation and loss in highway snowbanks,” Journal of Environmental Quality, vol. 28, no. 1, pp. 155–164, 1999.
[2]  D. M. Ramakrishna and T. Viraraghavan, “Environmental impact of chemical deicers—a review,” Water, Air, and Soil Pollution, vol. 166, no. 1–4, pp. 49–63, 2005.
[3]  L. Bernstein, L. E. Francois, and R. A. Clark, “Salt tolerance of ornamental shrubs and ground covers,” Journal of American Society of Horticultural Science, vol. 97, pp. 550–556, 1972.
[4]  C. Cassaniti, C. Leonardi, and T. J. Flowers, “The effects of sodium chloride on ornamental shrubs,” Scientia Horticulturae, vol. 122, no. 4, pp. 586–593, 2009.
[5]  A. W. Davison, “The effects of de-icing salt on roadside verges. 1. Soil and plant analysis,” Journal of Applied Ecology, vol. 8, pp. 555–561, 1971.
[6]  A. E. Rich, “Effects of salt on Eastern highway trees,” American Nurseryman, vol. 135, pp. 36–39, 1972.
[7]  A. Galuszka, Z. M. Migaszewski, R. Podlaski, S. Dolegowska, and A. Michalik, “The influence of chloride deicers on mineral nutrition and the health status of roadside trees in the city of Kielce, Poland,” Environmental Monitoring and Assessment, vol. 176, pp. 451–464, 2011.
[8]  A. K. Parida and A. B. Das, “Salt tolerance and salinity effects on plants: a review,” Ecotoxicology and Environmental Safety, vol. 60, no. 3, pp. 324–349, 2005.
[9]  R. Munns and M. Tester, “Mechanisms of salinity tolerance,” Annual Review of Plant Biology, vol. 59, pp. 651–681, 2008.
[10]  M. Tester and R. Davenport, “Na+ tolerance and Na+ transport in higher plants,” Annals of Botany, vol. 91, no. 5, pp. 503–527, 2003.
[11]  E. Sucoff, S. G. Hong, and A. Wood, “NaCl and twig dieback along highways and cold hardiness of highway versus garden twigs,” Canadian Journal of Botany, vol. 54, pp. 2268–2274, 1976.
[12]  E. V. Maas, “Crop tolerance to saline sprinkling water,” Plant and Soil, vol. 89, no. 1–3, pp. 273–284, 1985.
[13]  G. P. Lumis, G. Hofstra, and R. Hall, Salt Damage to Roadside Plants, vol. 275, Ontario Department of Agriculture and Food Agdex, 1971.
[14]  G. Hofstra, R. Hall, and G. P. Lumis, “Studies of salt-induced damage to roadside plants in Ontario,” Journal of Arboriculture, vol. 5, pp. 25–31, 1979.
[15]  S. S. Kaushal, P. M. Groffman, G. E. Likens et al., “Increased salinization of fresh water in the Northeastern United States,” Proceedings of the National Academy of Sciences of the United States of America, vol. 102, no. 38, pp. 13517–13520, 2005.
[16]  V. M. Moran, L. A. Abron, and L. W. Weinberger, “A comparison of conventional and alternative deicers: an environmental impact perspective,” in Chemical Deicers and the Environment, pp. 261–341, Lewis Publishers, Boca Raton, Fla, USA, 1992.
[17]  S. A. Dunn and R. U. Schenk, “Alternatives to sodium chloride for highway deicing,” Transportation Research Record 776, Guideway Snow and Ice Control and Roadside Maintenance, Washington, DC, USA, 1980.
[18]  R. R. Horner, “Environmental monitoring and evaluation of calcium magnesium acetate (CMA),” Cooperative Highway Research Program Report 305, Transportation Research Board. National Research Council, Washington, DC, USA, 1988.
[19]  G. Winters, J. Gidley, and H. Hunt, “Environmental evaluation of CMA,” Report FHWA-RD-84-095, FHWA, U.S. Department of Transportation, 1985.
[20]  A. Joutti, E. Schultz, P. Pessala, T. Nysten, and P. Hellsten, “Ecotoxicity of alternative de-icers,” Journal of Soils and Sediments, vol. 3, no. 4, pp. 269–272, 2003.
[21]  D. G. Manning and L. W. Crowder, “A Comparative Field Study of Calcium Magnesium Acetate and Rock Salt during the Winter of 1986-1987,” The Research and Development Branch, Ontario Ministry of Transportation and Communications, Downsview, Ontario, Canada, 1987.
[22]  R. L. McCrum, “Calcium magnesium acetate and sodium chloride as highway deicing salts. A comparative study,” Materials Performance, vol. 28, no. 12, pp. 24–28, 1989.
[23]  P. D. Warrington, “Roadsalt and winter maintenance for British Columbia municipalities: best management practices to protect water quality,” Water, Air and Climate Change Branch, Environmental Protection Division, Ministry of Environment, Government of British Columbia, 1998, http://www.env.gov.bc.ca/wat/wq/bmps/roadsalt.html.
[24]  T. D. Landis, K. M. Wilkinson, D. E. Steinfeld, S. A. Riley, and G. N. Fekaris, “Roadside revegetation of forest highways: new applications for native plants,” Native Plants, vol. 6, pp. 297–305, 2005.
[25]  H. Koester, “Native plants and urban sustainability,” Native Plants, vol. 9, pp. 323–333, 2008.
[26]  M. A. Dirr, “Salts and woody-plant interactions in the urban environment,” USDA Forest Service General Technical Report 22, US Northeast Forest Experiment Station, 1976.
[27]  USDA (United States Department of Agriculture), “Plant fact sheet: Bearberry (Arctostaphylos uva-ursi (L.) Spreng. USDA,” Natural Resources Conservation Service, Northeast Plant Materials Program, Washington, DC, USA, 2002.
[28]  A. MacKinnon, J. Pojar, and R. Coupe, Plants of Northern British Columbia, B.C. Ministry of Forests and Lone Pine Publishing, , Vancouver, BC, Canada, 2nd edition, 1999.
[29]  D. Johnson, L. Kershaw, A. MacKinnon, and J. Pojar, Plants of the Western Boreal Forest and Aspen Parkland, Lone Pine Publishing and the Canadian Forest Service, Edmonton, Alberta, Canada, 1995.
[30]  C. Tatarniuk, R. Donahue, and D. Sego, “Snow characterization at a city snow storage facility,” Journal of Cold Regions Engineering, vol. 23, no. 4, Article ID 001904QCR, pp. 136–142, 2009.
[31]  W. H. Hendershot, H. Lalande, and M. Duquette, “Soil reaction and exchangeable acidity,” in Soil Sampling and Methods of Analysis, M. R. Carter and E. G. Gregorich, Eds., pp. 173–178, CRC Press, Taylor and Francis Group, Boca Raton, Fla, USA, 2nd edition, 2008.
[32]  F. Eryilmaz, “The relationships between salt stress and anthocyanin content in higher plants,” Biotechnology and Biotechnological Equipment, vol. 20, no. 1, pp. 47–52, 2006.
[33]  J. J. Miller and D. Curtin, “Electrical conductivity and soluble ions,” in Soil Sampling and Methods of Analysis, M. R. Carter and and E. G. Gregorich, Eds., pp. 161–171, CRC Press, Taylor and Francis Group, Boca Raton, Fla, USA, 2nd edition, 2008.
[34]  D. C. Close and C. L. Beadle, “The ecophysiology of foliar anthocyanin,” Botanical Review, vol. 69, no. 2, pp. 149–161, 2003.
[35]  L. Chalker-Scott, “Environmental significance of anthocyanins in plant stress responses,” Photochemistry and Photobiology, vol. 70, no. 1, pp. 1–9, 1999.
[36]  L. Shaked-Sachray, D. Weiss, M. Reuveni, A. Nissim-Levi, and M. Oren-Shamir, “Increased anthocyanin accumulation in aster flowers at elevated temperatures due to magnesium treatment,” Physiologia Plantarum, vol. 114, no. 4, pp. 559–565, 2002.
[37]  Y. Tanaka, N. Sasaki, and A. Ohmiya, “Biosynthesis of plant pigments: anthocyanins, betalains and carotenoids,” Plant Journal, vol. 54, no. 4, pp. 733–749, 2008.
[38]  I. Tozlu, G. A. Moore, and C. L. Guy, “Effects of increasing NaCl concentration on stem elongation, dry mass production, and macro- and micro-nutrient accumulation in Poncirus trifoliata,” Australian Journal of Plant Physiology, vol. 27, no. 1, pp. 35–42, 2000.
[39]  E. Tavakkoli, F. Fatehi, S. Coventry, P. Rengasamy, and G. K. McDonald, “Additive effects of Na+ and Cl- ions on barley growth under salinity stress,” Journal of Experimental Botany, vol. 62, no. 6, pp. 2189–2203, 2011.
[40]  E. Tavakkoli, P. Rengasamy, and G. K. McDonald, “High concentrations of Na+ and Cl- ions in soil solution have simultaneous detrimental effects on growth of faba bean under salinity stress,” Journal of Experimental Botany, vol. 61, no. 15, pp. 4449–4459, 2010.
[41]  D. Hillel, Introduction to Environmental Soil Physics, Academic Press, 2004.
[42]  N. C. Brady and R. R. Weil, The Nature and Properties of Soils, Prentice Hall, 13th edition, 2002.
[43]  D. Ernst, G. Demich, and T. Weiman, Calcium Magnesium Acetate Research in Washington State, Transportation Research Board, National Research Council, Washington, DC, USA, 1985.
[44]  W. C. Ormsby, “New technologies improve cost-effectiveness of CMA,” U.S. Department of Transport. Federal Highway Administration. Public Roads, vol. 63, no. 3, 1999.
[45]  W. Fu and A. P. Mathews, “Two-stage fermentation process for the production of calcium magnesium acetate and propionate road deicers,” Enzyme and Microbial Technology, vol. 36, no. 7, pp. 953–959, 2005.
[46]  B. Kermath, “Why go native? Landscaping for biodiversity and sustainability education,” International Journal of Sustainability in Higher Education, vol. 8, no. 2, pp. 210–223, 2007.
[47]  S. R. Smith Jr. and R. D. B. Whalley, “A model for expanded use of native grasses,” Native Plants Journal, vol. 3, pp. 38–49, 2002.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133