全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2018 

一类可分离SAT问题的O(1.890n)精确算法

DOI: 10.13328/j.cnki.jos.005378

Keywords: 可满足性问题 NP完全问题 正则可分离性 精确算法 算法复杂性

Full-Text   Cite this paper   Add to My Lib

Abstract:

布尔可满足性问题(SAT)是指对于给定的布尔公式,是否存在一个可满足的真值指派.这是第1个被证明的NP完全问题,一般认为不存在多项式时间算法,除非P=NP.学者们大都研究了子句长度不超过k的SAT问题(k-SAT),从全局搜索到局部搜索,给出了大量的相对有效算法,包括随机算法和确定算法.目前,最好算法的时间复杂度不超过O((2-2/k)n),当k=3时,最好算法时间复杂度为O(1.308n).而对于更一般的与子句长度k无关的SAT问题,很少有文献涉及.引入了一类可分离SAT问题,即3-正则可分离可满足性问题(3-RSSAT),证明了3-RSSAT是NP完全问题,给出了一般SAT问题3-正则可分离性的O(1.890n)判定算法.然后,利用矩阵相乘算法的研究成果,给出了3-RSSAT问题的O(1.890n)精确算法,该算法与子句长度无关

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133