全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2015 

萤火虫算法优化的高光谱遥感影像极限学习机分类方法

Keywords: 极限学习机,高光谱遥感,分类,参数优化

Full-Text   Cite this paper   Add to My Lib

Abstract:

摘要: 机器学习方法在高光谱遥感影像分类中广泛应用,本文使用新型的极限学习机(Extreme Learning Machine,ELM)进行高光谱遥感影像分类,针对ELM中正则化参数C和核参数σ,提出以萤火虫算法(Firefly Algorithm,FA)进行优化。首先,采用萤火虫算法进行高光谱遥感影像的波段选择,以便降低维数;然后,利用萤火虫算法以分类精度最大化为准则对ELM的参数组合(C,σ)进行寻优;最后,利用参数优化后的ELM分类器,对3个不同传感器的高光谱遥感影像进行分类。实验中将新型的萤火虫算法与遗传算法(Genetic Algorithm,GA)和粒子群算法(Particle Swarm Optimization,PSO)进行了对比,并将ELM的性能与支持向量机(Support Vector Machine,SVM)方法作对比。结果表明,FA优化方法优于传统的GA和PSO优化方法,ELM方法的效果在训练时间和分类准确率2个方面都优于SVM方法。实验说明,本文提出的方法具有较好的适用性和较优的分类效果。

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133