全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2020 

基于卷积神经网络(CNN)的泥质烃源岩TOC预测模型——以鄂尔多斯盆地杭锦旗地区为例
TOC prediction model for muddy source rocks based on convolutional neural network (CNN): a case study of the Hangjinqi area of the Ordos Basin

DOI: 10.7523/j.issn.2095-6134.2020.01.012

Keywords: 泥质烃源岩,TOC,测井,卷积神经网络(CNN),BP神经网络(BPNN)
muddy source rock
,TOC content,well logging,convolutional neural network(CNN),BP neural network(BPNN)

Full-Text   Cite this paper   Add to My Lib

Abstract:

摘要 总有机碳含量(TOC)是烃源岩评价的重要指标。传统的TOC预测模型有ΔlogR和BP神经网络,但是ΔlogR的拟合精度较低,BP神经网络容易陷入局部最优。针对这些问题,提出一种基于卷积神经网络(convolutional neural network,CNN)预测烃源岩TOC的方法。以鄂尔多斯盆地杭锦旗地区上古生界泥质烃源岩为研究对象,通过对比实验验证该方法的有效性。实验结果表明,CNN可用于TOC预测,且预测精度高于ΔlogR和BP神经网络。利用CNN对108口钻井的山1段和太原组泥岩的TOC值进行预测,并结合沉积微相做出TOC平面图,发现研究区的东南部和中部的沼泽沉积微相的TOC值较高,分流河道沉积微相的TOC值较低。TOC值的平面分布与沉积微相分布在整体上具有良好的匹配关系,显示了CNN方法计算TOC的可行性。

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133