全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2019 

一种改进的基于峭度指标的FastICA算法
An improved FastICA algorithm based on kurtosis index

DOI: 10.7523/j.issn.2095-6134.2019.03.015

Keywords: FastICA,高阶统计特性,峭度指标,协峭度张量
FastICA
,high order statistics,kurtosis index,cokurtosis tensor

Full-Text   Cite this paper   Add to My Lib

Abstract:

摘要 基于峭度指标的FastICA算法具有较快的收敛速度和较高的计算效率,被广泛应用于多光谱图像的特征提取。经典的FastICA算法基于固定点迭代法得到图像的各个独立成分,在迭代过程中,每一个独立成分的求解都需要所有像元的参与。因此,当数据量较大或图像中像元较多时,FastICA的计算量很大,此时它的速度优势就会大打折扣。遥感数据一般都具有较大的尺寸,因此如何将FastICA直接应用于遥感数据,是一个具有实际意义的问题。通过引入多光谱图像协峭度张量的概念,将FastICA的固定点迭代问题转化为代数形式的张量计算,避免每次迭代过程中需所有像元参与的缺陷,因而大大降低计算复杂度。多光谱图像实验结果表明,该算法明显快于传统的基于峭度指标的FastICA算法。

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133