|
- 2020
纳米Fe2O3-还原氧化石墨烯复合材料的制备及对双酚A的检测
|
Abstract:
双酚A(BPA)被广泛应用于食品包装材料中,它会引起人体内分泌失调,并导致免疫和生殖系统异常,因此对生活用水中BPA的检测十分重要。本文采用一步水热法合成纳米Fe2O3-还原氧化石墨烯(Fe2O3-rGO)复合材料并进行表征,基于Fe2O3-rGO复合材料构建电化学传感器Fe2O3-rGO/玻碳电极,用于检测水样中的BPA。通过FTIR、XRD和SEM分析,表明纳米Fe2O3粒子成功附着到rGO上;采用微分脉冲伏安法(DPV)进行BPA的电化学检测,结果显示BPA在0.1~100 μmol/L范围内呈现良好的线性关系,检出限为0.033 μmol/L(信噪比为3)。同时,Fe2O3-rGO/玻碳电极电化学传感器对电活性物质和常见金属离子具有良好的抗干扰能力,且实样检测结果理想。 The bisphenol A (BPA) is widely used in food packaging materials. It can cause endocrine disorders in human body and lead to abnormal immune and reproductive system, so it is very important to detect BPA in water. In this paper, the ferric oxide-reduced graphene oxide (Fe2O3-rGO) composite was synthesized and characterized by one step hydrothermal method. Based on the Fe2O3-rGO composite, the Fe2O3-rGO/glassy carbon electrode electrochemical sensor was constructed for the detection of BPA in water. The results of FTIR, XRD and SEM show that Fe2O3 nanoparticles are successfully attached to rGO. The electrochemical detection of BPA by differential pulse voltammetry (DPV) shows that the linear range of BPA is 0.1-100 μmol/L and the detection limit is 0.033 μmol/L (signal to noise ratio is 3). Meanwhile, the Fe2O3-rGO/glassy carbon electrode electrochemical sensor has good anti-interference ability to electroactive substances and common metal ions and the real sample detection results are ideal. 2019山东省研究生导师指导能力提升项目;新工科背景下研究生协同创新培养队伍和立体化平台建
[1] | 赵美萍, 李元宗, 常文保. 酚类环境雌激素的分析研究进展[J]. 分析化学, 2003, 31(1):103-109.ZHAO M P, LI Y Z, CHANG W B. The analysis of phenolic environmental estrogens[J]. Chinese Journal of Analytical Chemistry, 2003, 31(1):103-109(in Chinese). |
[2] | KANG J H, AASI D, KATAYAMA Y. Bisphenol A in the aquatic environment and its endocrine-disruptive effects on aquatic organisms[J]. Critical Reviews in Toxicology, 2007, 37(7):607-625. |
[3] | BILANCIO A, BONTEMPO P, DONATO M D, et al. Bisphenol a induces cell cycle arrest in primary and prostate cancer cells through EGFR/ERK/p53 signaling pathway activation[J]. Oncotarget, 2017, 8(70):115620-115631. |
[4] | HUANG Y F, PAN W C, TSAI Y A, et al. Concurrent exposures to nonylphenol, bisphenol A, phthalates, and organophosphate pesticides on birth outcomes:A cohort study in Taipei, Taiwan[J]. Science of The Total Environment, 2017, 607-608:1126-1135. |
[5] | CHEN S, CHEN J, ZHU X. Solid phase extraction of bisphenol A using magnetic core-shell (Fe3O4@SiO2) nanoparticles coated with an ionic liquid, and its quantitation by HPLC[J]. Microchimica Acta, 2016, 183(4):1315-1321. |
[6] | ZHAN T, SONG Y, TAN Z, et al. Electrochemical bisphenol A sensor based on exfoliated Ni2Al-layered double hydroxide nanosheets modified electrode[J]. Sensors & Actuators B:Chemical, 2017, 238:962-971. |
[7] | 贺全国, 刘晓鹏, 邓培红, 等. MnO2纳米棒-还原石墨烯复合修饰玻碳电极用于苋菜红的检测[J]. 复合材料学报, 2018, 35(11):3227-3234.HE Q G, LIU X P, DENG P H, et al. Preparation of MnO2 nanorods-reduced graphene composite modified electrodes and application in detection of amaranth[J]. Acta Materiae Compositae Sinica, 2018, 35(11):3227-3234(in Chinese). |
[8] | 贺全国, 梁静, 李广利, 等. 纳米Fe3O4-还原氧化石墨烯复合修饰玻碳电极的制备及电化学检测多巴胺[J]. 复合材料学报, 2018, 35(9):2542-2550.HE Q G, LIANG J, LI G L, et al. Fabrication of nanoFe3O4-reduced graphene oxide composite modified glassy carbon electrode and its application for the determination of dopamine[J]. Acta Materiae Compositae Sinica, 2018, 35(9):2542-2550(in Chinese). |
[9] | ZHANG Z, WANG H, ZHANG Y, et al. Carbon nanotube/hematite core/shell nanowires on carbon cloth for supercapacitor anode with ultrahigh specific capacitance and superb cycling stability[J]. Chemical Engineering Journal, 2017, 325:221-228. |
[10] | GUPTA C S, DEY S, SAMANTA D, et al. Near room temperature sensing of nitric oxide using SnO2/Ni-decorated natural cellulosic graphene nanohybrid film[J]. Journal of Materials Science:Materials in Electronics, 2018, 29:20162-20171. |
[11] | RUAN H D, FROST R L, KLOPROGGE J T, et al. Infrared spectroscopy of goethite dehydroxylation Ⅲ:FTIR microscopy of in situ study of the thermal transformation of goethite to hematite[J]. Spectrochimica Acta Part A:Molecular and Biomolecular Spectroscopy, 2002, 58(5):967-981. |
[12] | 国家卫生和计划生育委员会. 食品安全国家标准食品接触用塑料材料及制品:GB/T 4806.7-2016[S]. 北京:中国标准出版社, 2017.National Health and Family Planning Commission of the People's Republic of China. Food safety national standard:Food contact plastic materials and products:GB/T 4806.7-2016[S]. Beijing:China Standards Press, 2017(in Chinese). |
[13] | LI H, WANG W, LV Q, et al. Disposable paper-based electrochemical sensor based on stacked gold nanoparticles supported carbon nanotubes for the determination of bisphenol A[J]. Electrochemistry Communications, 2016, 68:104-107. |
[14] | GUO W, ZHANG A, ZHANG X, et al. Multiwalled carbon nanotubes/gold nanocomposites-based electrochemiluminescent sensor for sensitive determination of bisphenol A[J]. Analytical and Bioanalytical Chemistry, 2016, 408(25):7173-7180. |
[15] | NIU X, YANG W, WANG G, et al. A novel electrochemical sensor of bisphenol A based on stacked graphene nanofibers/gold nanoparticles composite modified glassy carbon electrode[J]. Electrochimica Acta, 2013, 98:167-175. |
[16] | DENG P, XU Z, LI J, et al. Acetylene black paste electrode modified with a molecularly imprinted chitosan film for the detection of bisphenol A[J]. Microchimica Acta, 2013, 180(9-10):861-869. |
[17] | ZHANG R, ZHANG Y, DENG X, et al. A novel dual-signal electrochemical sensor for bisphenol A determination by coupling nanoporous gold leaf and self-assembled cyclodextrin[J]. Electrochimica Acta, 2018, 271:417-424. |
[18] | TAN F, CONG L C, LI X N, et al. An electrochemical sensor based on molecularly imprinted polypyrrole/graphene quantum dots composite for detection of bisphenol A in water samples[J]. Sensors & Actuators B:Chemical, 2016, 233:599-606. |
[19] | MINATOYA M, ARAKI A, NAKAJIMA S, et al. Cord blood BPA level and child neurodevelopment and behavioral problems:The Hokkaido study on environment and children's health[J]. Science of The Total Environment, 2017, 607-608:351-356. |
[20] | WANG Q, ZHU L, CHEN M, et al. Simultaneously determination of bisphenol A and its alternatives in sediment by ultrasound-assisted and solid phase extractions followed by derivatization using GC-MS[J]. Chemosphere, 2017, 169:709-715. |
[21] | LORESTANI F, SHAHNAVAZ Z, MN P, et al. One-step hydrothermal green synthesis of silver nanoparticle-carbon nanotube reduced-graphene oxide composite and its application as hydrogen peroxide sensor[J]. Sensors and Actuators B:Chemical, 2015, 208:389-398. |
[22] | WANG R, REN X G, YAN Z, et al. Graphene based functional devices:A short review[J]. Frontiers of Physics, 2019, 14(1):13603-13620. |
[23] | NERI G, BONAVITA A, GALVAGNO S, et al. CO and NO2 sensing properties of doped-Fe2O3 thin films prepared by LPD[J]. Sensors and Actuators B:Chemical, 2002, 82(1):40-47. |
[24] | BAI H Y, CHEN C, WU H, et al. Fabrication of ferric oxide/reduced graphene oxide/cadmium sulfide heterostructure photoelectrode for enhanced photoelectrochemical performance[J]. Crystal Research and Technology, 2016, 51(11):656-662. |