|
- 2019
搅拌摩擦加工制备羟基磷灰石增强镁复合材料的微观组织和力学性能
|
Abstract:
[1] | 郑玉峰, 李莉. 生物医用材料学[M]. 陕西:西北工业大学出版社, 2009.ZHENG Y F, LI L. Biomedical materials[M]. Shaanxi:Northwesten Polytechnical University Press, 2009(in Chinese). |
[2] | CHEN J, TAN L, YU X, et al. Mechanical properties of magnesium alloys for medical application:A review[J]. Journal of the Mechanical Behavior of Biomedical Materials, 2018, 87:68-79. |
[3] | GU X, ZHENG Y. A review on magnesium alloys as biodegradable materials[J]. Frontiers of Materials Science in China, 2010, 4(2):111-115. |
[4] | ZHENG Y F, GU X N, WITTE F. Biodegradable metals[J]. Materials Science and Engineering R Reports, 2014, 77:1-34. |
[5] | LIM G B. DREAMS of a bioabsorbable stent coming true[J]. Nature Reviews Cardiology, 2013, 10:120. |
[6] | MISHRA R S, MA Z Y. Friction stir welding and processing[J]. Materials Science and Engineering R Reports, 2005, 50(1):1-78. |
[7] | RATNA SUNIL B, SAMPATH KUMAR T S, CHAKKINGAL U, et al. Friction stir processing of magnesium-nanohydroxyapatite composites with controlled in vitro degradation behavior[J]. Materials Science and Engineering C, 2014, 39:315-324. |
[8] | RATNA SUNIL B, SAMPATH KUMAR T S, CHAKKINGAL U, et al. Nano-hydroxyapatite reinforced AZ31 magnesium alloy by friction stir processing:A solid state processing for biodegradable metal matrix composites[J]. Journal of Materials Science:Materials in Medicine, 2014, 25(4):975-988. |
[9] | 杨萌, 陈民芳, 由臣, 等. 纳米羟基磷灰石对Mg-Zn-Zr合金体外生物性能的影响[J]. 复合材料学报, 2011, 28(1):82-87.YANG M, CHEN M F, YOU C, et al. Effect of nano-hydroxyapatite on Mg-Zn-Zr alloy biological properties in vitro[J]. Acta Materiae Compositae Sinica, 2011, 28(1):82-87(in Chinese). |
[10] | XIONG G, NIE Y, JI D, et al. Characterization of biomedical hydroxyapatite/magnesium composites prepared by powder metallurgy assisted with microwave sintering[J]. Current Applied Physics, 2016, 16(8):830-836. |
[11] | 黄春平, 柯黎明, 邢丽, 等. 搅拌摩擦加工研究进展及前景展望[J]. 稀有金属材料与工程, 2011, 40(1):183-188.HUANG C P, KE L M, XING L, et al. Research progress and prospect of friction stir processing[J]. Rare Metal Materials and Engineering, 2011, 40(1):183-188(in Chinese). |
[12] | 李锦. 搅拌摩擦加工WE43镁合金的组织及性能研究[D]. 广州:华南理工大学, 2014.LI J. Microstructure and properties of fine-grained WE43 magnesium alloy prepared by friction stir processing[D]. Guangzhou:South China University of Technology, 2014(in Chinese). |
[13] | SHARIFITABAR M, SARANI A, KHORSHAHIAN S, et al. Fabrication of 5052Al/Al2O3 nanoceramic particle reinforced composite via friction stir processing route[J]. Materials & Design, 2011, 32(8-9):4164-4172. |
[14] | CAO G, ZHANG D, ZHANG W, et al. Microstructure evolution and mechanical properties of Mg-Nd-Y alloy in different friction stir processing conditions[J]. Journal of Alloys and Compounds, 2015, 636:12-19. |
[15] | FREENEY T A, MISHRA R S. Effect of friction stir processing on microstructure and mechanical properties of a cast-magnesium-rare earth alloy[J]. Metallurgical & Materials Transactions A, 2010, 41(1):73-84. |
[16] | 蔡叶, 苏华钦. SiCP/AZ80镁基复合材料的界面与断口特征[J]. 复合材料学报, 1997, 14(2):76-79.CAI Y, SU H Q. Characteristic of the interface and fracture surface on SiCp/AZ80 composite[J]. Acta Materiae Compo-sitae Sinica, 1997, 14(2):76-79(in Chinese). |
[17] | ZHAO D, WITTE F, LU F, et al. Current status on clinical applications of magnesium-based orthopaedic implants:A review from clinical translational perspective[J]. Biomaterials, 2017, 112:287-302. |
[18] | 袁广银, 章晓波, 牛佳林, 等. 新型可降解生物医用镁合金JDBM的研究进展[J]. 中国有色金属学报, 2011(10):2476-2488.YUAN G Y, ZHANG X B, NIU J L, et al. Research progress of new type of degradable biomedical magnesium alloys JDBM[J]. The Chinese Journal of Nonferrous Metals, 2011(10):2476-2488(in Chinese). |
[19] | 张佳, 宗阳, 袁广银, 等. 新型医用Mg-Nd-Zn-Zr镁合金在模拟体液中的降解行为[J]. 中国有色金属学报, 2010, 20(10):1989-1997.ZHANG J, ZONG Y, YUAN G Y, et al. Degradable behavior of new-type medical Mg-Nd-Zn-Zr magnesium alloy in simulated body fluid[J]. The Chinese Journal of Nonferrous Metals, 2010, 20(10):1989-1997(in Chinese). |
[20] | ZHAO Y, WU G, JIANG J, et al. Improved corrosion resistance and cytocompatibility of magnesium alloy by two-stage cooling in thermal treatment[J]. Corrosion Science, 2012, 59:360-365. |
[21] | KARAGEORGIOU V, KAPLAN D. Porosity of 3D biomaterial scaffolds and osteogenesis[J]. Biomaterials, 2005, 26(27):5474-5491. |
[22] | CAMPO R D, SAVOINI B, MU?OZ A, et al. Mechanical properties and corrosion behavior of Mg-HAP composites[J]. Journal of the Mechanical Behavior of Biomedical Materials, 2014, 39:238-246. |
[23] | KHALAJABADI S Z, ABDUL KADIR M R, IZMAN S, et al. Fabrication, bio-corrosion behavior and mechanical properties of a Mg/HA/MgO nanocomposite for biomedical applications[J]. Materials & Design, 2015, 88:1223-1233. |