全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2019 

液体模塑成型工艺用纤维织物厚度方向饱和渗透率的预测模型液体模塑成型工艺用纤维织物厚度方向饱和渗透率的预测模型
Prediction model of through-thickness saturated permeability of fabric for liquid composite molding

DOI: 10.13801/j.cnki.fhclxb.20180902.001

Keywords: 饱和渗透率,厚度方向,注射压力,纤维体积分数,织物预成型体
saturated permeability
,through-thickness direction,injection pressure,fiber volume fraction,fabric preforms

Full-Text   Cite this paper   Add to My Lib

Abstract:

树脂在复合材料预成型体厚度方向的渗透能力对复合材料液体模塑成型工艺(LCM)的成功实施至关重要。本文采用连续加载的方式,研究了玻璃纤维增强树脂基复合材料液体成型过程中多轴向无屈曲织物(NCF)和斜纹织物(WF)的压缩响应行为,并建立描述该行为的数学模型。采用自制测试装置对预成型体在重力等不同注射压力驱动下的厚度方向渗透率进行测试,考察了预成型体纤维体积分数、测试流体注射压力等对预成型体厚度方向渗透率Kz的影响。基于预成型体压缩响应数学模型和厚度方向渗透率与注射压力的关系,对Kozeny-Carman公式进行修正,提出了变注射压力条件下的厚度方向渗透率预测模型。结果表明:预成型体厚度方向渗透率随着纤维体积分数的增大而减小,与Kozeny-Carman方程结果相符合。当纤维体积分数为0.42≤Vf≤0.58时,注射压力对厚度方向渗透率影响较大,实验结果验证了本文提出的预测模型;当纤维体积分数Vf≥0.58时,注射压力对厚度方向渗透率影响较小,厚度方向渗透率趋于恒定。 The penetration of resin along thickness is one of the most crucial factors in liquid composite molding (LCM). The method of continuous loading was used to study the compressive behaviors of non-crimp fabric(NCF) and woven fabrics(WF) during the liquid molding of glass fiber reinforced resin matrix composite respectively and a mathematical model was established to describe this behavior. The through-thickness permeability Kz of the preform under gravity and different injection pressures was tested by a self-made through-thickness permeability testing device. The influence of the preform fiber volume fraction and injection pressure on Kz of the preform was studied. Based on the preform compressive behavior model and the dependence of Kz on injection pressure, the Kozeny-Carman formula was modified and a through-thickness permeability prediction model was presented. The results show that the through-thickness permeability decreases with the increase of the fiber volume fraction of the perform Vf, which agrees with the Kozeny-Carman equation. As the fiber volume fraction varies in the region from 0.42 to 0.58, injection pressure has significant influence on the permeability, and the accuracy of the prediction model presented here is validated experimentally. However, when the fiber volume fraction is higher than 0.58, the injection pressure has little effect on Kz and Kz tends to be constant as Vf increases. 中央高校基本科研业务费专项资金(2018-zy-001

References

[1]  邢丽英, 蒋诗才, 周正刚. 先进树脂基复合材料制造技术进展[J]. 复合材料学报, 2013, 30(2):1-9. XING Liying, JIANG Shicai, ZHOU Zhenggang. Progress in manufacturing technology of advanced resin matrix composites[J]. Journal of Composites, 2013, 30(2):1-9(in Chinese).
[2]  IMBERT M, COMAS-CARDONA S, ABISSET-CHAVANNE E, et al. Experimental investigation of intra-tow fluid storage mechanisms in dual-scale fiber reinforcements[J]. Composites Part A:Applied Science & Manufacturing, 2018, 107:70-82.
[3]  YUN M, CARELLA T, SIMACEK P, et al. Stochastic modeling of through the thickness permeability variation in a fabric and its effect on void formation during vacuum assisted resin transfer molding[J]. Composites Science & Technology, 2017, 149:100-107.
[4]  XIAO X, ENDRUWEIT A, ZENG X, et al. Through-thickness permeability study of orthogonal and angle-interlock woven fabrics[J]. Journal of Materials Science, 2015, 50(3):1257-1266.
[5]  张娜, 赵子为, 刘春太, 等. 风力发电机叶片用玻璃纤维织物的渗透率[J]. 复合材料学报, 2013, 30(4):245-249. ZHANG Na, ZHAO Ziwei, LIU Chuntai, et al. Permeability of glass fabric for wind turbine blades[J]. Journal of Composites, 2013, 30(4):245-249(in Chinese).
[6]  张盛, 祖磊, 王继辉, 等. VIMP工艺中纤维增强体Z向渗透性分析[C]//玻璃钢/复合材料学术交流会, 2014. ZHANG Sheng, ZU Lei, WANG Jihui, et al. Z-direction permeability of fiber reinforcement in VIMP process[C]//GRP/Composite Academic Exchanges, 2014(in Chinese).
[7]  倪爱清, 王继辉, 朱以文. 复合材料液体模塑成型工艺中预成型体渗透率张量的数值预测[J]. 复合材料学报, 2007, 24(6):50-56. NI Aiqing, WANG Jihui, ZHU Yiwen. Numerical prediction of permeability of preformed body in liquid composite molding[J]. Composite Journal, 2007, 24(6):50-56(in Chinese).
[8]  KLUNKER F, DANZI M, ERMANNI P. Fiber deformation as a result of fluid injection:Modeling and validation in the case of saturated permeability measurements in through thickness direction[J]. Journal of Composite Materials, 2015, 49(8):1091-1105.
[9]  ENDRUWEIT A, LUTHY T, ERMANNI P. Investigation of the influence of textile compression on the out-of-plane permeability of a bidirectional glass fiber fabric[J]. Polymer Composites, 2002, 23(4):538-554.
[10]  LI M, GU Y, ZHANG Z, et al. A simple method for the measurement of compaction and corresponding transverse permeability of composite prepregs[J]. Polymer Composites, 2007, 28(1):61-70.
[11]  ALHUSSEIN H, UMER R, SWERY E, et al. In-plane and through thickness permeability characterization of 3D woven reinforcementsendruweit[C]//The 20th Internation Conference on Composite Materials. Copenhogen, Elinor Swery, 2015.
[12]  刘刚, 张朋, 李伟东, 等. 结构化增韧层增韧RTM复合材料预成型体的渗透特性[J]. 复合材料学报, 2015, 32(2):586-593. LIU Gang, ZHANG Peng, LI Weidong, et al. Permeability characteristics of RTM composites preform with structural toughening[J]. Journal of Composite Materials, 2015, 32(2):586-593(in Chinese).
[13]  金天国, 魏雅君, 杨波, 等. 预成型体渗透率预测及其受压缩变形的影响[J]. 复合材料学报, 2015, 32(3):840-847. JIN Tianguo, WEI Yajun, YANG Bo, et al. Prediction of permeability of preform and its effect on compression deformation[J]. Journal of Composites, 2015, 32(3):840-847(in Chinese).
[14]  CAI Z, GUTOWSKI T, ALLEN S. Winding and consolidation analysis for cylindrical composite structures[J]. Journal of Composite Materials, 1992, 26(9):1374-1399.
[15]  SCHOLZ S, JR J W G, HEIDER D. Measurement of transverse permeability using gaseous and liquid flow[J]. Composites Part A:Applied Science & Manufacturing, 2007, 38(9):2034-2040.
[16]  VERNET N, RUIZ E, ADVANI S, et al. Experimental determination of the permeability of engineering textiles:Benchmark Ⅱ[J]. Composites Part A:Applied Science & Manufacturing, 2014, 61(7):172-184.
[17]  NAIK N K, SIRISHA M, INANI A. Permeability characterization of polymer matrix composites by RTM/VARTM[J]. Progress in Aerospace Sciences, 2014, 65(5):22-40.
[18]  李伟东, 刘刚, 安学锋, 等. z向流动RTM工艺树脂的流动浸润行为[J]. 复合材料学报, 2013, 30(6):82-89. LI Weidong, LIU Gang, AN Xuefeng, et al. Flow impregnation behavior of resin in Z direction for RTM[J]. Journal of Composites, 2013, 30(6):82-89(in Chinese).
[19]  邓育文, 王继辉, 高国强, 等. LCM工艺增强材料横向渗透率测量研究[J]. 武汉理工大学学报, 2006, 28(1):15-17. DENG Yuwen, WANG Jihui, GAO Guoqiang, et al. Transverse permeability measurement of reinforcement in LCM process[J]. Journal of Wuhan University of Technolog. 2006, 28(1):15-17(in Chinese).
[20]  李永静, 晏石林, 严飞, 等. 注射条件对LCM工艺非饱和流动特性影响[J]. 复合材料学报, 2016, 33(11):2688-2697. LI Yongjing, YAN Shilin, YAN Fei, et al. Influence of injection conditions on the unsaturated flow characteristics of LCM process[J]. Journal of Composites, 2016, 33(11):2688-2697(in Chinese).
[21]  AHN S H, LEE W I, SPRINGER G S. Measurement of the three-dimensional permeability of fiber preforms using embedded fiber optic sensors[J]. Journal of Composite Materials, 1995, 29(6):714-733.
[22]  COMAS-CARDONA S, BINETRUY C, KRAWCZAK P. Unidirectional compression of fibre reinforcements:Part 2:A continuous permeability tensor measurement[J]. Composites Science & Technology, 2014, 67(3):638-645.
[23]  XIAO X, ENDRUWEIT A, ZENG X, et al. Through-thickness permeability study of orthogonal and angle-interlock woven fabrics[J]. Journal of Materials Science, 2015, 50(3):1257-1266.
[24]  OUAGNE P, BRéARD J. Continuous transverse permeability of fibrous media[J]. Composites Part A:Applied Science & Manufacturing, 2010, 41(1):22-28.
[25]  钟勇, 肖加余, 尹笃林, 等. VIMP中结构拐角对纤维预成型体渗透特性的影响[J]. 复合材料学报, 2015, 32(1):217-226. ZHONG Yong, XIAO Jiayu, YIN Dulin, et al. Effect of structural corner on permeability of fiber preform in VIMP[J]. Journal of Composites, 2015, 32(1):217-226(in Chinese).

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133