|
- 2019
MoS2/Sb2S3复合光催化剂的制备及其可见光催化性能
|
Abstract:
通过一步水热法制备出MoS2/Sb2S3可见光复合催化剂,采用XRD、SEM、紫外可见漫反射(UV-Vis DRS)和XPS表征手段对MoS2/Sb2S3复合光催化剂进行了表征,以罗丹明B(RhB)作为目标污染物进行降解实验。与纯Sb2S3和MoS2相比,MoS2/Sb2S3复合光催化剂对RhB的光催化降解具有更高的效率,表现出优异的吸附性能和光催化性能。同时在相同的实验条件下,与TiO2、Bi2S3、C3N4、Sb2S3等催化剂相比,MoS2/Sb2S3复合光催化剂表现出更为优异的光催化性能。此外,探究了MoS2/Sb2S3复合光催化剂光催化降解机制,阐述了光催化反应机制,提供了一种适用于降解较高浓度有机废水的光催化剂制备方法,具有一定的应用价值。 Visible light responsive MoS2/Sb2S3 composite photocatalyst was successfully designed and constructed by a simple one-step hydrothermal process. XRD, SEM, UV-vis diffuse reflectance spectroscopy (UV-Vis DRS) and XPS were used to characterize its photocatalytic activity. The degradation experiment was conducted with rhodamine B (RhB) as the target pollutant. Compared with the pure Sb2S3 and MoS2, the MoS2/Sb2S3 composite photocatalyst exhibits highly enhanced efficiency in the degradation of RhB, showing excellent adsorption performance and photocatalytic performance. Compared with TiO2, Bi2S3, C3N4 and Sb2S3, MoS2/Sb2S3 composite photocatalyst is possessed as more excellent photocatalyst under the same experimental conditions. In addition, the photocatalytic degradation mechanism was carried on the exploration. This research expounds the mechanism of photocatalytic reaction, and provides a application for the photocatalyst preparation methods of degradation high concentration organic wastewater, which has certain application value. 国家科技重大专项项目(2016ZX05040003
[1] | YU L, LI G J, ZHANG X S, et al. Enhanced activity and stability of carbon-decorated cuprous oxide mesoporous nanorods for CO2 reduction in artificial photosynthesis[J]. ACS Catalysis, 2016, 6(10):6444-6454. |
[2] | LI Y F, JIN R X, FANG, X, et al. In situ loading of Ag2WO4 on ultrathin g-C3N4 nanosheets with highly enhanced photocatalytic performance[J]. Journal of Hazardous Materials, 2016, 313(5):219-228. |
[3] | SATHASEELAN B, MANIKANDAN E, SIVAKUMAR K, et al. Enhanced visible photoluminescent and structural properties of ZnO/KIT-6 nanoporous materials for white light emitting diode (w-LED) application[J]. Journal of Alloys and Compounds, 2015, 651(5):479-482. |
[4] | 言文远, 周琪, 陈星, 等. 两步水热法制备还原氧化石墨烯/纳米TiO2复合材料及其光催化性能[J]. 复合材料学报, 2016, 33(1):123-131.YAN W Y, ZHOU Q, CHEN X, et al. Preparation of reduced graphene oxide/nano TiO2 composites by two-step hydro-thermal method and their photocatalysic properties[J]. Acta Materiae Compositae Sinica, 2016, 33(1):123-131(in Chinese). |
[5] | LI K Q, HUANG F Q, LIN X P, et al. Pristine narrow-bandgap Sb2S3 as a high-efficiency visible-light responsive photocatalyst[J]. Scripta Materialia, 2008, 58(10):834-837. |
[6] | ZHAO L, MENG Q, FAN X, et al. Photocatalysis with quantum dots and visible light:Selective and efficient oxidation of alcohols to carbonyl compounds through a radical relay process in water[J]. Angewandte Chemie, 2017, 56(11):3020-3024. |
[7] | WANG Q W, DONG S Y, ZHANG D, et al. Magnetically recyclable visible-light-responsive MoS2@Fe3O4 photocatalysts targeting efficient wastewater treatment[J]. Journal of Materials Science, 2018, 53(2):1135-1147. |
[8] | WANG C X, LIN H H, XU Z Z, et al. One-step hydrothermal synthesis of flowerlike MoS2/CdS heterostructures for enhanced visible-light photocatalytic activities[J]. RSC Advances, 2015, 20(5):15621-15626. |
[9] | ZHU H Y, WANG Y, XIAO J, et al. Observation of piezoelectricity in free-standing monolayer MoS2[J]. Nature Nanotechnology, 2015, 10(2):151-155. |
[10] | CHEN C, ZHU K, CHEN K, et al. Synthesis of Ag nanoparticles decoration on magnetic carbonized polydopamine nanospheres for effective catalytic reduction of Cr(VI)[J]. Journal of Colloid and Interface Science, 2018, 526:1-8. |
[11] | ZHANG H J, GE M, YANG L T, et al. Synthesis and catalytic properties of Sb2S3 nanowire bundles as counter electrodes for dye-sensitized solar cells[J]. Journal of Physical Chemistry C, 2013, 117(20):10285-10290. |
[12] | LU X J, WANG Y, ZHANG X Y, et al. NiS and MoS2 nanosheet co-modified graphitic C3N4 ternary heterostructure for high efficient visible light photodegradation of antibiotic[J]. Journal of Hazardous Materials, 2018, 341:10-19. |
[13] | XUE Y D, MADURAIVEERAN G, WANG M Y, et al. Hierarchical oxygen- implanted MoS2 nanoparticle decorated graphene for the non-enzymatic electrochemical sensing of hydrogen peroxide in alkaline media[J]. Talanta, 2017, 176:397-405. |
[14] | LI M, RUAN H R, YUAN X Q, et al Construction of 2D MoS2/PbS heterojunction nanocomposites with enhanced photoelectric property[J]. Materials Letters, 2018, 212:82-85. |
[15] | KRISHNAMOORTHY K, VEERASUBRAMANI G K, PAZHAMALAI P, et al. Designing two dimensional nano-architectured MoS2 sheets grown on Mo foil as a binder free electrode for supercapacitors[J]. Electrochimica Acta, 2016, 190:305-312. |
[16] | XIA J, YIN S, LI H, et al. Improved visible light photocatalytic activity of sphere-like BiOBr hollow and porous structures synthesized via a reactable ionic liquid[J]. Dalton Transactions, 2011, 40(19):5249- 5258. |
[17] | ZHAO D, YANG X, CHEN C, et al. Enhanced photocatalytic degradation of methylene blue on multiwalled carbon nanotubes TiO2[J]. Journal of Colloid and Interface Science, 2013, 398:234-239. |
[18] | ZHU Q A, GONG M, ZHANG C, et al. Preparation of Sb2S3 nanomaterials with different morphologies via a refluxing approach[J]. Journal of Crystal Growth, 2009, 311(14):3651-3655. |
[19] | SHUAI X M, SHEN W Z. A facile chemical conversion synthesis of Sb2S3 nanotubes and the visible light-driven photocatalytic activities[J]. Nanoscale Research Letters, 2012, 7(1):199. |
[20] | SUN M, LI D Z, LI W J, et al. New photocatalyst, Sb2S3, for degradation of methyl orange under visible-light irradiation[J]. Journal of Physical Chemistry C, 2008, 112(46):18076-18081. |
[21] | WANG C, YAN J, WU X Y, et al. Synthesis and characterization of AgBr/AgNbO3 composite with enhanced visible-light photocatalytic activity[J] Applied Surface Science, 2013, 273(13):159-166. |
[22] | RAHMANIAN E, MALEKFAR R, PUMERA M, et al. Nanohybrids of two-dimensional transition-metal dichalcogenides and titanium dioxide for photocatalytic applications[J]. Chemistry, 2018, 24(1):18-31. |
[23] | THANGAVEL S, THANGAVEL S, ALAGU R, et al. Efficient visible-light photocatalytic and enhanced photocorrosion inhibition of Ag2WO4 decorated MoS2 nanosheets[J]. Journal of Physics and Chemistry of Solids, 2017, 110:266-273. |
[24] | GAO Y, CHEN C, TAN X, et al. Polyaniline-modified 3D-flower-like molybdenum disulfide composite for efficient adsorption/photocatalytic reduction of Cr(VI)[J]. Journal of Colloid and Interface Science, 2016, 476:62-70. |
[25] | ZHAO D, SHENG G, CHEN C, et al. Enhanced photocatalytic degradation of methylene blue under visible irradiation on graphene@TiO2 dyade structure[J]. Applied Catalysis B:Environmental, 2012, 111-112:303-308. |
[26] | LV J L, DAI K, ZHANG J F, et al. In situ controllable synthesis of novel surface plasmon resonance-enhanced Ag2WO4/Ag/Bi2MoO6 composite for enhanced and stable visible light photocatalyst[J]. Applied Surface Science, 2017, 391:507-515. |
[27] | KAVIYARASU K, MANIKANDAN E, KENNEDY J, et al. Synthesis and characterization studies of NiO nanorods for enhancing solar cell efficiency using photon upconversion materials[J]. Ceramics International, 2016, 42(7):8385-8394. |
[28] | LI Y F, ZHANG W P, LI X R, et al. TiO2 nanoparticles with high ability for selective adsorption and photodegradation of textile dyes under visible light by feasible preparation[J]. Journal of Physics and Chemistry of Solids, 2014, 75(1):86-93. |
[29] | 黄冬根, 莫壮洪, 全水清, 等. 石墨烯/纳米TiO2复合材料的制备及光催化还原性能[J]. 复合材料学报, 2016, 33(1):155-162.HUANG D G, MO Z H, QUAN S Q, et al. Preparation and photocatalytic reduction performance of graphene/nanoTiO2 comp- ositiesa[J]. Acta Materiae Compositae Sinica, 2016, 33(1):155-162(in Chinese). |
[30] | 姚志强, 李惠娟, 周徐胜, 等. TiO2/蒙脱土复合材料的制备及光催化降解苯酚性能[J]. 复合材料学报, 2015, 32(6):1581-1589.YAO Z Q, LI H J, ZHOU X S, et al. Preparation and photocatalytic degradationperformances for phenol of TiO2/montmorillonite composites[J]. Acta Materiae Compositae Sinica, 2015, 32(6):1581-1589(in Chinese). |