|
- 2019
超薄MnOx修饰多孔碳纳米纤维及其电容脱盐
|
Abstract:
MnO2具有较高的理论比电容而作为良好的电容器材料,但因其导电性和循环稳定性较差,从而限制其电化学应用。本研究以静电纺丝技术制备的多孔碳纳米纤维(PCNF)为载体,经KMnO4浸泡后,高温退火获得超薄MnOx层修饰的复合碳纳米纤维(APCNF-MnOx)。通过接触角、SEM、TEM、电化学表征及电容脱盐测试对比分析了碳纤维多孔结构对MnOx形貌及电化学性能的影响。电化学测试结果表明:APCNF-MnOx电极的比电容是退火的MnOx修饰无孔碳纳米纤维(ACNF-MnOx)电极的4倍(20 mV/s)。以APCNF-MnOx为电容器负极材料,成功制得电容器去离子器件,其电容脱盐量达到9.23 mg/g,比ACNF-MnOx提高了29%。 MnO2 has been used as a capacitor material owing to its high theoretical specific capacitance, however, its poor conductivity and cycle stability limits its electrochemical applications. The annealed ultrathin MnOx-modified porous carbon nanofiber (APCNF-MnOx) was successfully fabricated by self-incubation of electrospun porous carbon nanofibers (PCNF) in KMnO4 solution and followed by heat treatment. The effects of porosity of the carbon fiber on the morphology of MnOx and the electrochemical properties were comparatively studied by contact angle test, SEM, TEM and electrochemical characterization. The electrochemical results demonstrate that the APCNF-MnOx electrode can keep high capacitance retention, with the specific capacity 4 times higher (20 mV/s) than that of the annealed MnOx-modified nonporous carbon nanofiber (ACNF-MnOx). The APCNF-MnOx, as a cathode, is applied successfully for capacitive desalination. The desalination amount of the capacitor reaches 9.23 mg/g, which is 29% higher than that of ACNF-MnOx. 国家自然科学基金(21776045;21476047
[1] | GUEON D H, MOON J H. MnO2 nanoflake-shelled carbon nanotube particles for high-performance supercapacitors[J]. ACS Sustainable Chemistry & Engineering, 2017, 5(3): 2445-2453. |
[2] | ZHOU D, LIN H M, ZHANG F, et al. Freestanding MnO2 nanoflakes/porous carbon nanofibers for high-performance flexible supercapacitor electrodes[J]. Electrochimica Acta, 2015, 161: 427-435. |
[3] | LEE D G, KIM Y A, KIM B H. Capacitive properties of hierarchically structured carbon nanofiber/graphene/MnO2 hybrid electrode with nitrogen and oxygen heteroatoms[J]. Carbon, 2016, 107: 783-791. |
[4] | 杨泽林, 郑浩然, 智胜辉, 等. 同轴静电纺丝制备中空多孔碳纳米纤维[J]. 河北大学学报(自然科学版), 2016, 36(3): 237-241. YANG Z L, ZHENG H R, ZHI S H, et al. Fabrication of hollow porous carbon nanofibers by coaxial electrospinning[J]. Journal of Hebei University (Natural Science Edition), 2016, 36(3): 237-241(in Chinese). |
[5] | 巩桂芬, 王磊, 徐阿文. 静电纺PMMA/EVOH-SO3Li锂离子电池隔膜复合材料的制备及性能[J]. 复合材料学报, 2018, 35(3): 477-484. GONG G F, WANG L, XU A W. Preparation and properties of PMMA/EVOH-SO3Li Li-ion battery separator composite by electrospinning[J]. Acta Materiae Compositae Sinica, 2018, 35(3): 477-484(in Chinese). |
[6] | KAERKITCHA N, CHUANGCHOTE S, SAGAWA T. Control of physical properties of carbon nanofibers obtained from coaxial electrospinning of PMMA and PAN with adjustable inner/outer nozzle-ends[J]. Nanoscale Research Letters, 2016, 11(1): 186-193. |
[7] | 张竞, 何伟, 马腾, 等. 静电纺丝PAN纳米纤维的制备与表征[J]. 江苏科技大学学报(自然科学版), 2011, 25(4): 342-345. ZHANG J, HE W, MA T, et al. Preparation and characterization of pan nanofiber via electrostatic spinning[J]. Journal of Jiangsu University of Science and Technology (Natural Science Edition), 2011, 25(4): 342-345(in Chinese). |
[8] | 杨光, 时宇, 康萌萌, 等. 聚噻吩/纳米MnO2复合材料的制备表征及电化学性能[J]. 复合材料学报, 2014, 31(3): 628-634. YANG G, SHI Y, KANG M M, et al. Preparation, characterizations and electrochemical performance of polythiophene/nano MnO2 composite[J]. Acta Materiae Compositae Sinica, 2014, 31(3): 628-634(in Chinese). |
[9] | CAI W S, XIONG Z B, HUSSAIN T, et al. Porous MnOx covered electrospun carbon nanofiber for capacitive deionization[J]. Journal of the Electrochemical Society, 2016, 163(13): A1-A9. |
[10] | HONG C K, YANG K S, OH S H, et al. Effect of blend composition on the morphology development of electrospun fibres based on PAN/PMMA blends[J]. Polymer International, 2008, 57(12): 1357-1362. |
[11] | 卢淼, 刘建允, 程健, 等. 功能化石墨烯/活性炭复合电极及不对称电容器脱盐[J]. 物理化学学报, 2014, 30(12): 2263-2271. LU M, LIU J Y, CHENG J, et al. Functionalized graphene/activated carbon composite electrodes for asymmetric capacitive deionization[J]. Acta Physico-Chimica Sinica, 2014, 30(12): 2263-2271(in Chinese). |
[12] | XIE Z Z, CHENG J, YAN J B, et al. Polydopamine modified activated carbon for capacitive desalination[J]. Journal of the Electrochemical Society, 2017, 164(12): A2636-A2643. |
[13] | KARTHIKEYAN R, WANG B, XUAN J, et al. Interfacial electron transfer and bioelectrocatalysis of carbonized plant material as effective anode of microbial fuel cell[J]. Electrochimica Acta, 2015, 157: 314-323. |
[14] | LEE D G, KIM B H. MnO2 decorated on electrospun carbon nanofiber/graphene composites as supercapacitor electrode materials[J]. Synthetic Metals, 2016, 219: 115-123. |
[15] | 卢淼, 刘建允, 王世平, 等. 磺化石墨烯/活性炭复合电极的制备及其不对称电容器脱盐[J]. 高等学校化学学报, 2014, 35(7): 1546-1552. LV M, LIU J Y, WANG S P, et al. Preparation of sulfonated graphene/activated carbon composite electrode for asymmetric capacitive deionization[J]. Chemical Journal of Chinese Universities, 2014, 35(7): 1546-1552(in Chinese). |
[16] | LIU J Y, XIONG Z B, WANG S P, et al. Structure and electrochemistry comparison of electrospun porous carbon nanofibers for capacitive deionization[J]. Electrochimica Acta, 2016, 210: 171-180. |
[17] | 郭继玺, 宋贤丽, 郭明晰, 等. MnO2/煤基碳纳米纤维的制备及其在柔性超级电容器中的应用[J]. 化学通报, 2016, 79(10): 942-951. GUO J X, SONG X L, GUO M X, et al. Preparation of MnO2/CBCNFs composite materials and its electrochemical performance for flexible supercapacitor[J]. Chemistry, 2016, 79(10): 942-946(in Chinese). |
[18] | 吕潇, 李光, 杨胜林, 等. PAN/PMMA共混制备纳米残纤维的结构与性能[J]. 合成纤维工业, 2010, 33(1): 1-4. LV X, LI G, YANG S L, et al. Structure and properties of PAN/PMMA carbon nanofiber[J]. China Synthetic Fiber Industry, 2010, 33(1): 1-4(in Chinese). |
[19] | ORTABOY S, ALPER J P, ROSSI F, et al. MnOx-deco-rated carbonized porous silicon nanowire electrodes for high performance supercapacitors[J]. Energy & Environmental Science, 2017, 10(6): 1505-1516. |
[20] | 刁彩虹, 肖长发, 胡晓宇. 亲水性多孔聚丙烯腈纤维的研究[J]. 合成纤维工业, 2010, 33(4): 28-31. DIAO C H, XIAO C F, HU X Y. Research of hydrophilic multi-porous polyacrylonitrile fiber[J]. China Synthetic Fiber Industry, 2010, 33(4): 28-31(in Chinese). |
[21] | ZHU T, ZHENG J, LUO J, et al. Improvement of hydrothermally synthesized MnO2 electrodes on Ni foams via facile annealing for supercapacitor applications[J]. Journal of Materials Science, 2014, 49(17): 6118-6126. |
[22] | LIU J Y, WANG S P, YANG J M, et al. ZnCl2 activated electrospun carbon nanofiber for capacitive desalination[J]. Desalination, 2014, 344: 446-453. |
[23] | FISCHER A E, PETTIGREW K A, ROLISON D R, et al. Incorporation of homogeneous, nanoscale MnO2 within ultraporous carbon structures via self-limiting electroless deposition: Implications for electrochemical capacitors[J]. Nano Letters, 2007, 7(2): 281-286. |