全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2019 

MWCNTs改善WS2/三元乙丙橡胶复合材料的非线性电导特性与热导性能
Improved nonlinear conductivity and thermal conductivity of WS2/ethylene propylene diene monomer composites with MWCNTs

DOI: 10.13801/j.cnki.fhclxb.20180514.001

Keywords: 复合材料,非线性电导,热导率,多壁碳纳米管(MWCNTs),三元乙丙橡胶(EPDM),WS2
composites
,nonlinear conductivity,thermal conductivity,multi-walled carbon nanotubes (MWCNTs),ethylene-propylene-diene monomer (EPDM),WS2

Full-Text   Cite this paper   Add to My Lib

Abstract:

通过在一定量的纳米WS2中添加极少量的多壁碳纳米管(MWCNTs),形成MWCNTs-WS2复配填料,采用双辊开炼机将三元乙丙橡胶(EPDM)与不同配比的复配填料混合制备了不同MWCNTs含量的MWCNTs-WS2/EPDM复合材料。并研究了极少量的MWCNTs添加对MWCNTs-WS2/EPDM复合材料非线性电导性能、直流击穿性能和导热性能的影响。结果表明,极少量的MWCNTs对MWCNTs-WS2/EPDM复合材料在25℃时的非线性电导特性起到明显的增强作用,且随着MWCNTs含量的增加,复合材料非线性电导特征有明显的规律性变化;由于MWCNTs自身的高电导率和电导正温度系数效应,MWCNTs-WS2/EPDM复合材料电导率随电场强度的变化趋势在80℃时不再表现非线性特征。另外,极少量的MWCNTs对MWCNTs-WS2/EPDM复合材料的热导率有明显地改善。 Small amount of multi-walled carbon nanotubes (MWCNTs) was mixed with certain content of WS2 to fabricate a composite filler, then mixing which with ethylene propylene diene monomer (EPDM) to get the MWCNTs-WS2/EPDM composites with different MWCNTs content. The composite samples were prepared by using a mixing process and the nonlinear conductivity, direct current dielectric breakdown strength and thermal conductivity of MWCNTs-WS2/EPDM composites were investigated. The results show that with the help of WS2, very small amount of MWCNTs enhances the nonlinear conductivity of MWCNTs-WS2/EPDM composites obviously at 25℃, and the improvement is regularly by increasing the content of MWCNTs. Because of the excellent conductivity of MWCNTs and the electrical conduction positive temperature coefficient effect of itself, the nonlinear conductivity of MWCNTs-WS2/EPDM composites decreases with the increasing of temperature. There is no nonlinear change for the conductivity of MWCNTs-WS2/EPDM composites in increasing electric field at 80℃.The thermal conductivity of MWCNTs-WS2/EPDM composites is improved obviously with the help of MWCNTs. 国家重点研发计划项目(2016YFB0900803);国家电网公司科技项目(5202011600UK);国家自然科学基金(51425201;51622701

References

[1]  CHRISTEN T, DONZEL L, GREUTER F. Nonlinear resistive electric field grading Part 1: Theory and simulation[J]. IEEE Electrical Insulation Magazine, 2010, 26(6): 47-59.
[2]  DONZEL L, GREUTER F, CHRISTEN T. Nonlinear resistive electric field grading Part 2: Materials and applications[J]. IEEE Electrical Insulation Magazine, 2011, 27(2): 18-29.
[3]  BERBER S, KWON Y K, TOMANEK D. Unusually high thermal conductivity of carbon nanotubes[M]. New York: Springer, 2006.
[4]  KIM P, SHI L, MAJUMDAR A, et al. Thermal transport measurements of individual multiwalled nanotubes[J]. Physical Review Letters, 2001, 87(21): 215502.
[5]  CAI D, SONG M. Latex technology as a simple route to improve the thermal conductivity of a carbon nanotube/polymer composite[J]. Carbon, 2008, 46(15): 2107-2112.
[6]  YANG S Y, MA C C M, TENG C C, et al. Effect of functionalized carbon nanotubes on the thermal conductivity of epoxy composites[J]. Carbon, 2010, 48(3): 592-603.
[7]  CAO J P, ZHAO J, ZHAO X, et al. High thermal conductivity and high electrical resistivity of poly (vinylidene fluoride)/polystyrene blends by controlling the localization of hybrid fillers[J]. Composites Science & Technology, 2013, 89(1): 142-148.
[8]  ZHANG D L, ZHA J W, LI C Q, et al. High thermal conductivity and excellent electrical insulation performance in double-percolated three-phase polymer nanocomposites[J]. Composites Science and Technology, 2017, 144: 36-42.
[9]  CHEN X G, HE G H, DU J H, et al. Investigation on the thermal conductivity of HDPE/MWCNT composites by laser pulse method[J]. Science in China, 2009, 52(9): 2767-2772.
[10]  International Organization for Standardization. Plastics: Determination of thermal conductivity and thermal diffusivity Part 2: Transient plane heat source (hot disc) method: ISO 22007-2:2015[S]. Switzerland: International Organization for Standardization, 2015.
[11]  BAUHOFER W, KOVACS J Z. A review and analysis of electrical percolation in carbon nanotube polymer composites[J]. Composites Science & Technology, 2009, 69(10): 1486-1498.
[12]  Statistical Technical Committee. Guide for the statistical analysis of electrical insulation breakdown data: IEEE Std 930-2004[S]. New York: IEEE, 2004.
[13]  HAN P, ZHA J W, ZENG M S, et al. Nonlinear electric conductivity and thermal conductivity of WS2/EPDM field grading materials[J]. Journal of Applied Physics, 2017, 122(19): 195106.
[14]  ZHA J W, DANG Z M, ZHAO K, et al. Prominent nonlinear electrical conduction characteristic in T-ZnO/PTFE composites with low threshold field[J]. IEEE Transactions on Dielectrics & Electrical Insulation, 2012, 19(2): 567-573.
[15]  YANG Z H, HU P H, WANG S J, et al. Effect of nano-fillers distribution on the nonlinear conductivity and space charge behavior in SiC/PDMS composites[J]. IEEE Transactions on Dielectrics & Electrical Insulation, 2017, 24(3): 1735-1742.
[16]  ZHA J W, DANG Z M, LI W K, et al. Effect of micro-Si3N4-nano-Al2O3 co-filled particles on thermal conductivity, dielectric and mechanical properties of silicone rubber composites[J]. IEEE Transactions on Dielectrics & Electrical Insulation, 2014, 21(4): 1989-1996.
[17]  NAN C W, SHI Z, LIN Y. A simple model for thermal conductivity of carbon nanotube-based composites[J]. Chemical Physics Letters, 2003, 375(5): 666-669.
[18]  CHEN H, GINZBURG V V, YANG J, et al. Thermal conductivity of polymer-based composites: Fundamentals and applications[J]. Progress in Polymer Science, 2016, 59: 41-85.
[19]  MENSAH N G, NKRUMAH G, MENSAH S Y, et al. Temperature dependence of the thermal conductivity in chiral carbon nanotubes[J]. Physics Letters A, 2004, 329(4-5): 369-378.
[20]  KIM H M, CHOI M S, JOO J. Complexity in charge transport for multiwalled carbon nanotube and poly(methyl methacrylate) composites[J]. Physical Review B: Condensed Matter, 2006, 74(5): 054202.
[21]  黄怀国. MWCNTs表面改性剑麻纤维及其环氧树脂基复合材料传感器的制备及性能[J]. 复合材料学报, 2015, 32(3): 621-631.HUANG H G. Preparation and properties of MWCNTs surface modified sisal fibers and their epoxy based composite sensors[J]. Acta Materiae Compositae Sinica, 2015, 32(3): 621-631(in Chinese).
[22]  PETERS J E, PAPAVASSILIOU D V, GRADY B P. Unique thermal conductivity behavior of single-walled carbon nanotube-polystyrene composites[J]. Macromolecules, 2008, 41(20): 7274-7277.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133