|
- 2019
细菌纤维素@聚吡咯-单壁碳纳米管导电膜的制备与表征
|
Abstract:
为了获得柔性高电导率导电材料,以细菌纤维素(BC)、吡咯(Py)和单壁碳纳米管(SWCNTs)为原料,在不添加任何黏合剂的情况下,通过简单的原位氧化聚合和真空过滤法制备了BC@聚Py-SWCNTs(BC@PPy-SWCNTs)新型导电膜。通过SEM、FTIR对BC@PPy-SWCNTs复合膜的表面形貌、化学成分进行表征。研究了BC@PPy-SWCNTs膜的电化学性能。结果表明,在SWCNTs添加量为4.7%(质量比)时,BC@PPy-SWCNTs复合膜的电导率可达到6.42 S·cm-1,相比BC@PPy有了很大提高,在充电电流为5 mA·cm-2时,其面积电容可达到0.53 F·cm-2,其能量密度达0.036 mWh·cm-2,功率密度达到1.75 mW·cm-2。BC@PPy-SWCNTs膜拓宽了电极材料的种类,有望应用于超级电容器、电池及传感器等领域。 In order to obtain flexible high-conductivity conductive materials, a novel conductive film of bacterial cellulose@polypyrrole-single wall carbon nanotubes(BC@PPy-SWCNTs) composite films was prepared by simple in situ oxidative polymerization and vacuum filtration using BC, pyrrole (Py) and SWCNTs as the raw materials without any adhesive. The surface morphology and chemical composition of BC@PPy-SWCNTs composite films were characterized by SEM and FTIR. The electrochemical properties of BC@PPy-SWCNTs composite films were studied. The results demonstrate that when the 4.7% mass ratio of SWCNTs is added, the conductivity of BC@PPy-SWCNTs film can reach 6.42 S·cm-1, which is much higher than that of BC@PPy film. When the charging current is 5 mA·cm-2, the area capacitance of BC@PPy-SWCNTs composite films can reach 0.53 F·cm-2 with an energy density of 0.036 mWh·cm-2 and a power density of 1.75 mW·cm-2, respectively. The film widens the variety of BC@PPy-SWCNTs composite films electrode composite films, which has a great possibility for use in supercapacitors, batteries, and sensors. 国家重点研发计划(2017YFB0309800;2016YEC0400503-02);国家自然科学基金(31200719;51403152;51473122);天津市科技特派员项目(16JCTPJC44400);天津市应用基础及前沿技术研究计划(14JCQNJC14200);新疆自治区重大项目(2016A03006-3);中国纺织工业联合会科技指导性项目(2017011
[1] | LIANG H W, GUAN Q F, ZHU Z, et al. Highly conductive and stretchable conductors fabricated from bacterial cellulose[J]. NPG Asia Materials, 2012, 4(6): 1-9. |
[2] | SNOOK G A, KAO P, BEST A S. Conducting-polymer-based supercapacitor devices and electrodes[J]. Journal of Power Sources, 2011, 196(1): 1-12. |
[3] | 任丽, 韩杨. 聚吡咯/磷酸铁锂复合正极材料的制备与表征[J]. 复合材料学报, 2012, 29(5): 41-46.REN L, HAN Y. Preparation and characterization of PPy/LiFePO4 composite material as cathode[J]. Acta Materiae Compositae Sinica, 2012, 29(5): 41-46(in Chinese). |
[4] | RAMYA R, SIVAUBRAMANIAN R, SANGARANARAYANAN M V. Conducting polymers-based electrochemical supercapacitors: Progress and prospects[J]. Electrochimica Acta, 2013, 101: 109-129. |
[5] | 付长璟, 李爽, 宋春来, 等. 聚吡咯/氧化石墨复合材料的制备及其电容性能[J]. 复合材料学报. 2016, 33(3): 572-579.FU C J, LI S, SONG C L, et al. Preparation of polypyrrole/graphite oxide composite and its capacitive properties[J]. Acta Materiae Compositae Sinica, 2016, 33(3): 572-579(in Chinese). |
[6] | 汤廉. 细菌纤维素/聚吡咯柔性导电复合膜材料的制备与表征[D]. 上海: 东华大学, 2013.TANG L. Preparation and characterization of bacterial cellulose/polypyrrole flexible conductive composite membrane material[D]. Shanghai: Donghua University, 2013(in Chinese). |
[7] | MVLLERA D, RAMBOB C R, RECOUVREUX D O S, et al. Chemical in situ polymerization of polypyrrole on bacterial cellulose nanofibers[J]. Synthetic Metals, 2011, 161(1-2): 106-111. |
[8] | 汪丽粉, 李政, 贾士儒, 等. 细菌纤维素性质及应用的研究进展[J]. 微生物学通报, 2014, 41(8): 1675-1683.WANG L F, LI Z, JIA S R, et al. The research progress in characteristics and applications of bacterial cellulose[J]. Microbiology China, 2014, 41(8): 1675-1683(in Chinese). |
[9] | 董丽攀, 李政, 夏文, 等. 细菌纤维素复合材料的研究新进展[J]. 材料科学与工艺, 2018, 26(1): 88-96.DONG L P, LI Z, XIA W, et al. The new research progress on composite material of bacterial cellulose[J]. Material Science and Technology. 2018, 26(1): 88-96(in Chinese). |
[10] | KIZILTAS E E, KIZILTAS A, RHODES K, et al. Electrically conductive nano graphite-filled bacterial cellulose composites[J]. Carbohydrate Polymers, 2016, 136: 1144-1151. |
[11] | 夏文, 李政, 华嘉川, 等. 细菌纤维素复合材料的应用进展[J]. 化工新型材料, 2016, 44(11): 20-22.XIA W, LI Z, HUA J C, et al. Research progress on composite material of bacterial cellulose[J]. New Chemical Materials, 2016, 44(11): 20-22(in Chinese). |
[12] | 祝立根. 用于超级电容器的聚吡咯复合织物电极材料的制备及性能研究[D]. 武汉: 武汉纺织大学, 2014.ZHU L G. Investigations of polypyrrole-coated textile substrate as supercapacitor electrode[D]. Wuhan: Wuhan Textile University, 2014(in Chinese). |
[13] | MAKARA L, ISRAEL G T, TARRéS J A, et al. High electrical and electrochemical properties in bacterial cellulose/polypyrrole membranes[J]. European Polymer Journal, 2017, 91: 1-9. |
[14] | LI S H, HUANG D K, YANG J C, et al. Freestanding bacterial cellulose-polypyrrole nanofibres paper electrodes for advanced energy storage devices[J]. Nano Energy, 2014, 9: 309-317. |
[15] | MA L, LIU R, NIU H J, et al. Freestanding conductive film based on polypyrrole/bacterial cellulose/graphene paper for flexible supercapacitor: Large areal mass exhibits excellent areal capacitance[J]. Electrochimica Acta, 2016, 222: 429-437. |
[16] | LIU Y, ZHOU J, TANG J, et al. Three-dimensional, chemically bonded polypyrrole/bacterial cellulose/graphene composites for high-performance supercapacitors[J]. Chemistry of Materials, 2015, 27(20): 7034-7041. |
[17] | PENG S, FAN L L, WEI C Z, et al. Flexible polypyrrole/copper sulfide/bacterial cellulose nanofibrous composite membranes as supercapacitor electrodes[J]. Carbohydrate Poly- mers, 2017, 157: 344-352. |
[18] | PENG S, FAN L L, WEI C Z, et al. Polypyrrole/nickel sulfide/bacterial cellulose nanofibrous composite membranes for flexible supercapacitor electrodes[J]. Cellulose, 2016, 23(4): 2639-2651. |
[19] | PENG S, FAN L L, WEI C Z, et al. Flexible polypyrrole/cobalt sulfide/bacterial cellulose composite membranes for supercapacitor application[J]. Synthetic Metals, 2016, 222: 285-292. |
[20] | MULLERA D, RAMBOB C R, PORTO L M, et al. Structure and properties of polypyrrole/bacterial cellulose nanocomposites[J]. Carbohydrate Polymers, 2013, 94(1): 655-662. |
[21] | KUMARA S, NEHRAAB M, KEDIA D, et al. Carbon nanotubes: A potential material for energy conversion and storage[J]. Progress in Energy and Combustion Science. 2018, 64: 219-253. |
[22] | TANG L, HAN J L, JIANG Z L. Flexible conductive polypyrrole nanocomposite membranes based on bacterial cellulose with amphiphobicity[J]. Carbohydrate Polymers, 2015, 117: 230-235. |