|
- 2019
疏松多孔CoFe2O4-还原石墨烯电极复合材料的制备与性能
|
Abstract:
采用原位溶剂热法,以氧化石墨烯(GO)与Co2+、Fe3+为原料制备疏松多孔的纳米CoFe2O4-还原氧化石墨烯(CoFe2O4-rGO)复合材料。采用XRD、Raman、SEM和HRTEM测试表征了纳米CoFe2O4-rGO复合材料的结构与形貌。测试结果表明,纳米CoFe2O4-rGO复合材料具有三维结构。自组装的多孔CoFe2O4纳米球粒径约为200 nm,在rGO上均匀分散,解决了CoFe2O4易团聚的问题。电化学测试结果表明,纳米CoFe2O4-rGO复合材料具有较高的比容量及优异的循环和倍率性能,在100 mA·g-1的电流密度下其比容量为1 262 mAh·g-1,50次循环后比容量仍能保持在642 mAh·g-1;并在2 000 mA·g-1的大电流密度下仍具有221 mAh·g-1的比容量。纳米CoFe2O4-rGO复合材料拥有更优异的电化学性能的原因在于CoFe2O4纳米球在rGO上均匀分布。三维结构增加了Li+储存的活性位点,有效缓解了电极的体积收缩/膨胀效应,提高了纳米CoFe2O4-rGO复合材料的导电性。 Loose and porous nano CoFe2O4-reduced graphene oxide (CoFe2O4-rGO) composites were prepared via in situ solvothermal method, using graphene oxide (GO), Co2+ and Fe3+ as the raw materials. XRD, Raman, SEM and HRTEM were employed to characterize the structure and morphology of nano CoFe2O4-rGO composites. The results show that nano CoFe2O4-rGO composites exhibit 3D structure. The self-assembled porous nanospheres with a diameter of about 200 nm are uniformly dispersed on rGO, which solves the agglomeration of CoFe2O4. The electrochemical test results show that nano CoFe2O4-rGO composites deliver a comparatively high specific capacity and excellent cycle and rate performance. The specific capacity reaches 1 262 mAh·g-1 at a current density of 100 mA·g-1, which can still maintain at 642 mAh·g-1 after 50 cycles. The specific capacity reaches 221 mAh·g-1 at a high current density of 2 000 mA·g-1. The enhanced electrochemical performance of nano CoFe2O4-rGO composites results from the homogenous distribution of CoFe2O4 nanospheres on rGO. The 3D structure provides more active sites of Li+ storage, and thus effectively relieve the volume shrinkage/expansion of the electrodes, which in return improve the conductivity of nano CoFe2O4-rGO composites. 国家自然科学基金(51773163;51706166);湖北省自然科学基金创新群体项目(2016CFA008);武汉理工大学国家级大学生创新创业训练计划(20171049701030
[1] | ZHANG W M, WU X L, HU J S, et al. Carbon coated Fe3O4 nanospindles as a superior anode material for lithium-ion batteries[J]. Advanced Functional Materials, 2008, 18(24): 3941-3946. |
[2] | HASSAN M F, GUO Z, CHEN Z, et al. α-Fe2O3 as an anode material with capacity rise and high rate capability for lithium-ion batteries[J]. Materials Research Bulletin, 2011, 46(6): 858-864. |
[3] | HUANG Y, HUANG X, LIAN J, et al. Self-assembly of ultrathin porous NiO nanosheets/graphene hierarchical structure for high-capacity and high-rate lithium storage[J]. Journal of Materials Chemistry, 2012, 22(7): 2844-2847. |
[4] | LIU Y, ZHAO X, LI F, et al. Facile synthesis of MnO/C anode materials for lithium-ion batteries[J]. Electrochimica Acta, 2011, 56(18): 6448-6452. |
[5] | KANG J G, KO Y D, PARK J G, et al. Origin of capacity fading in nano-sized Co3O4 electrodes: electrochemical impedance spectroscopy study[J]. Nanoscale Research Letters, 2008, 3(10): 390-394. |
[6] | CHERIAN C T, REDDY M V, RAO G V S, et al. Li-cycling properties of nano-crystalline (Ni1-xZnx) Fe2O4 (0≤x≤1)[J]. Journal of Solid State Electrochemistry, 2012, 16(5): 1823-1832. |
[7] | LI Z H, ZHAO T P, ZHAN X Y, et al. High capacity three-dimensional ordered macroporous CoFe2O4 as anode material for lithium ion batteries[J]. Electrochimica Acta, 2010, 55(15): 4594-4598. |
[8] | WANG Y, SU D, UNG A, et al. Hollow CoFe2O4 nanospheres as a high capacity anode material for lithium ion batteries[J]. Nanotechnology, 2012, 23(5): 055402. |
[9] | JIN Y H, SEO S D, SHIM H W, et al. Synthesis of core/shell spinel ferrite/carbon nanoparticles with enhanced cycling stability for lithium ion battery anodes[J]. Nanotechnology, 2012, 23(12): 125402. |
[10] | LI M, YIN Y X, LI C, et al. Well-dispersed bi-component-active CoO/CoFe2O4 nanocomposites with tunable performances as anode materials for lithium-ion batteries[J]. Chemical Communications, 2012, 48(3): 410-412. |
[11] | LIU S, XIE J, FANG C, et al. Self-assembly of a CoFe2O4/graphene sandwich by a controllable and general route: Towards a high-performance anode for Li-ion batteries[J]. Journal of Materials Chemistry, 2012, 22(37): 19738-19743. |
[12] | WEI W, YANG S, ZHOU H, et al. 3D graphene foams cross-linked with pre-encapsulated Fe3O4 nanospheres for enhanced lithium storage[J]. Advanced Materials, 2013, 25(21): 2909-2914. |
[13] | 付永胜. 石墨烯-磁性尖晶石型铁氧体多功能异质结的控制合成及其性质研究[D]. 南京: 南京理工大学, 2013.FU Y S. Controlled synthesis and properties study of graphene-magnetic spinel ferrite multifunctional heteroarchitecture[D]. Nanjing: Nanjing University of Science & Technology, 2013(in Chinese). |
[14] | 邓凌峰, 余开明, 严忠, 等. Co2+掺杂石墨烯/LiFePO4锂离子电池复合正极材料的制备与表征[J]. 复合材料学报, 2015, 32(5): 1390-1398.DENG L F, YU K M, YAN Z, et al. Preparation and characterization of Co2+ doped graphene/LiFePO4 composite cathode materials for lithium battery[J]. Acta Materiae Compositae Sinica, 2015, 32(5): 1390-1398(in Chinese). |
[15] | CHEN D, MEI X, JI G, et al. Reversible lithium-ion storage in silver-treated nanoscale hollow porous silicon particles[J]. Angewandte Chemie International Edition, 2012, 51(10): 2409-2413 |
[16] | 杨绍斌, 张琴, 沈丁, 等. 钠离子电池TiO2/还原氧化石墨烯负极材料的制备及储钠性能[J]. 复合材料学报, 2016, 33(12): 2905-2910.YANG S B, ZHANG Q, SHEN D, et al. Preparation and storage sodium properties of TiO2/reduced graphene oxide anode materials for sodium-ion batteries[J]. Acta Materiae Compositae Sinica, 2016, 33(12): 2905-2910(in Chinese) |
[17] | WANG Z, LUAN D, MADHAVI S, et al. Assembling carbon-coated α-Fe2O3 hollow nanohorns on the CNT backbone for superior lithium storage capability[J]. Energy & Environmental Science, 2012, 5(1): 5252-5256. |
[18] | ETACHERI V, MAROM R, ELAZARI R, et al. Challenges in the development of advanced Li-ion batteries: A review[J]. Energy & Environmental Science, 2011, 4(9): 3243-3262. |
[19] | 李旭, 孙晓刚, 陈玮, 等. 多孔碳纳米管纸负载中空硅微球作为阳极的高容量锂硅电池[J]. 复合材料学报, 2018, 35(11): 3219-3226.LI X, SUN X G, CHEN W, et al. High capacity lithium Si battery with hollow silicon microspheres loaded with porous carbon nanotubes as anode[J]. Acta Materiae Compositae Sinica, 2018, 35(11): 3219-3226(in Chinese). |
[20] | ZHAO Y, LI J, DING Y, et al. Single-walled carbon nanohorns coated with Fe2O3 as a superior anode material for lithium ion batteries[J]. Chemical Communications, 2011, 47(26): 7416-7418. |
[21] | ZHAO Y, LI J, DING Y, et al. Enhancing the lithium storage performance of iron oxide composites through partial substitution with Ni2+ or Co2+[J]. Journal of Materials Chemistry, 2011, 21(47): 19101-19105. |
[22] | XIAO Y, LI X, ZAI J, et al. CoFe2O4-graphene nanocomposites synthesized through an ultrasonic method with enhanced performances as anode materials for Li-ion batteries[J]. Nano-Micro Letters, 2014, 6(4): 307-315. |
[23] | LIU Y, CHEN Z, ZHANG Y, et al. Broadband and lightweight microwave absorber constructed by in-situ growth of hierarchical CoFe2O4/rGOporous nanocomposites[J]. ACS applied materials & interfaces, 2018, 10(16): 13860-13868 |
[24] | LV H, GUO Y, WU G, et al. Interface polarization strategy to solve electromagnetic wave interference issue[J]. ACS Applied Materials & Interfaces, 2017, 9(6): 5660-5668. |
[25] | LI Z H, ZHAO T P, ZHAN X Y, et al. High capacity three-dimensional ordered macroporous CoFe2O4 as anode material for lithium ion batteries[J]. Electrochimica Acta, 2010, 55(15): 4594-4598. |
[26] | VIDAL-ABARCA C, LAVELA P, TIRADO J L. A 57Fe M?ssbauer spectroscopy study of cobalt ferrite conversion electrodes for Li-ion batteries[J]. Journal of Power Sources, 2011, 196(16): 6978-6981. |
[27] | ZHOU G, WANG D W, LI F, et al. Graphene-wrapped Fe3O4 anode material with improved reversible capacity and cyclic stability for lithium ion batteries[J]. Chemistry of Materials, 2010, 22(18): 5306-5313. |
[28] | XUE D J, XIN S, YAN Y, et al. Improving the electrode performance of Ge through Ge@C core-shell nanoparticles and graphene networks[J]. Journal of the American Chemical Society, 2012, 134(5): 2512-2515. |