全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2019 

改性芳纶纤维增强木粉/高密度聚乙烯复合材料的力学性能
Mechanical properties of modified aramid fiber reinforced wood flour/high density polyethylene composites

DOI: 10.13801/j.cnki.fhclxb.20180530.006

Keywords: 复合材料,芳纶纤维,连续纤维,木粉,芳纶纤维表面改性,力学性能
composites
,aramid fiber,continuous fiber,wood flour,surface modification of aramid fiber,mechanical property

Full-Text   Cite this paper   Add to My Lib

Abstract:

采用螺杆挤出机研究了添加连续芳纶纤维增强木粉/高密度聚乙烯(CAF-WF/HDPE)复合材料,为改善CAF与WF/HDPE复合材料界面相容性,分别采用磷酸和硅烷偶联剂处理纤维。对比表面处理前后的CAF形态分析显示,经过处理的CAF表面粗糙度增加;采用磷酸和硅烷偶联剂处理,纤维束从基体中的拔出强度分别提高了94.9%和77.6%,表明处理后的CAF与WF/HDPE复合材料的界面结合强度有所提高。对比WF/HDPE复合材料,在挤出成型过程中加入未处理CAF,CAF-WF/HDPE复合材料拉伸强度、弯曲强度和冲击强度分别提高了32.1%、35.1%、515.1%;CAF采用硅烷偶联剂处理后,CAF-WF/HDPE复合材料对应的力学性能分别提高了42.0%、37.4%、550.2%。动态力学分析表明:表面处理后CAF与WF/HDPE复合材料的界面相容性得到改善。 The continuous aramid fiber(CAF) was added to wood flour/high density polyethylene(WF/HDPE) composites by screw extruder. Surface treatment of CAF with phosphoric acid and silane coupling agent was used to improve the interfacial compatibility between CAF and the WF/HDPE composites. The morphological analysis showed that the surface roughness of CAF increased after the surface treatment. Either the treatment of CAF with phosphoric acid or silane coupling agent, the pull-out strength of CAF bundle increases up to 94.9% and 77.6%, respectively. It shows that the interfacial bonding strength of the treated CAF and the WF/HDPE composites is enhanced. Compared with WF/HDPE composite without CAF, the composite with the untreated CAF results in that the tensile strength, flexural strength and impact strength of CAF-WF/HDPE composite increases by 32.1%, 35.1% and 515.1%, respectively. After CAF treated with silane coupling agent, the mechanical properties of CAF-WF/HDPE composite increase by 42.0%, 37.4% and 550.2%. The dynamic mechanical analysis shows that the interfacial compatibility of the CAF and WF/HDPE composite is improved after surface treatment. “十三五”国家重点研发计划课题(2017YFD0600802);中央高校基本科研基金平台项目(2572017PZ01

References

[1]  ZHOU Z, XU M, YANG Z, et al. Effect of maleic anhydride grafted polyethylene on the properties of chopped carbon fiber/wood plastic composites[J]. Journal of Reinforced Plastics & Composites, 2014, 33(13): 1216-1225.
[2]  ZHANG S H, HE G Q, LIANG G Z, et al. Comparison of F-12 aramid fiber with domestic armid fiber Ⅲ on surface feature[J]. Applied Surface Science, 2010, 256(7): 2104-2109.
[3]  欧荣贤, 赵辉, 王清文, 等. Kevlar纤维-木粉/HDPE混杂复合材料的制备与性能[J]. 高分子材料科学与工程, 2010, 26(10): 144-147+151. OU R X, ZHAO H, WANG Q W, et al. Preparation and properties of Kevlar fiber-wood flour/HDPE hybrid composites[J]. Polymer Materials Science & Engineering, 2010, 26(10): 144-147+151(in Chinese).
[4]  OU R, ZHAO H, SUI S, et al. Reinforcing effects of Kevlar fiber on the mechanical properties of wood-flour/high-density-polyethylene composites[J]. Composites Part A: Applied Science and Manufacturing, 2010, 41(9): 1272-1278.
[5]  LU Z, HU W, XIE F, et al. Argon low-temperature plasma modification of chopped aramid fiber and its effect on paper performance of aramid sheets[J]. Journal of Applied Polymer Science, 2017, 134(34): 45215.
[6]  XING L, LIU L, HUANG Y, et al. Enhanced interfacial properties of domestic aramid fiber-12 via high energy gamma ray irradiation[J]. Composites Part B: Engineering, 2015, 69: 50-57.
[7]  厉世能. 芳纶纤维的老化及表面处理的研究[D]. 苏州: 苏州大学, 2012. LI S N. Research on ageing and surface modification of aramid fibers[D]. Suzhou: Soochow University, 2012(in Chinese).
[8]  CAO K, SIEPERMANN C P, YANG M, et al. Reactive aramid nanostructures as high-performance polymeric building blocks for advanced composites[J]. Advanced Functional Materials, 2013, 23(16): 2072-2080.
[9]  CHENG Z, LI B, HUANG J, et al. Covalent modification of aramid fibers' surface via direct fluorination to enhance composite interfacial properties[J]. Materials & Design, 2016, 106: 216-225.
[10]  TIAN Y, ZHANG H, ZHANG Z. Influence of nanoparticles on the interfacial properties of fiber-reinforced-epoxy composites[J]. Composites Part A: Applied Science and Manufacturing, 2017, 98: 1-8.
[11]  DENG T, ZHANG G, DAI F, et al. Mild surface modification of para-aramid fiber by dilute sulfuric acid under microwave irradiation[J]. Textile Research Journal, 2016, 87(7): 799-806.
[12]  ZOLFAGHARI A, BEHRAVESH A H, ADLI A, et al. Continuous glass fiber reinforced wood plastic composite in extrusion process: Feasibility and processing[J]. Journal of Reinforced Plastics and Composites, 2012, 32(1): 52-60.
[13]  董庆亮. 多巴胺改性芳纶纤维及其复合材料界面性能研究[D]. 哈尔滨: 哈尔滨工业大学, 2014. DONG Q L. Study on dopamine-modified aramid fiber and the interfacial properties of the composites[D]. Harbin: Harbin Institute of Technology, 2014(in Chinese).
[14]  WANG L, SHI Y, SA R, et al. Surface modification of aramid fibers by catechol/polyamine codeposition followed by silane grafting for enhanced interfacial adhesion to rubber matrix[J]. Industrial & Engineering Chemistry Research, 2016, 55(49): 12547-12556.
[15]  American Society for Testing and Materials International. Standard test method for tensile properties of plastics: ASTM D638-03[S]. West Conshohocken: ASTM International, 2003.
[16]  中国国家标准化管理委员会. 塑料悬臂梁冲击强度的测定: GB/T 1843-2008[S]. 北京: 中国标准出版社, 2008. Standardization Administration of the People's Republic of China. Plastics: Determination of izod impact strength: GB/T 1843-2008[S]. Beijing: China Standards Press, 2008(in Chinese).
[17]  ZHAO J. Effect of surface treatment on the structure and properties of para-aramid fibers by phosphoric acid[J]. Fibers and Polymers, 2013, 14(1): 59-64.
[18]  LU X H, LIU C, TIAN J, et al. Study of applying aramid fiber treated insurface to EPDM rubber composite materials[J]. Applied Mechanics and Materials, 2013, 446-447: 18-21.
[19]  XIE Y, HILL C A S, XIAO Z, et al. Silane coupling agents used for natural fiber/polymer composites: A review[J]. Composites Part A: Applied Science and Manufacturing, 2010, 41(7): 806-819.
[20]  唐欣磊, 谭洪生, 谭浩, 等. 长芳纶纤维增强抗冲共聚聚丙烯复合材料的研究[J]. 工程塑料应用, 2013, 41(2): 5-9. TANG X L, TAN H S, TAN H, et al. Long aramid fiber reinforced impact polypropylene copolymer composites[J]. Engineering Plastics Application, 2013, 41(2): 5-9(in Chinese).
[21]  朱礼智. 木粉/聚丙烯复合界面分子运动弛豫过程解析[D]. 北京: 北京林业大学, 2013. ZHU L Z. Analyses of the relaxation processes of molecular movement on wood flour/polypropylene composite interface[D]. Beijing: Beijing Forestry University, 2013(in Chinese).
[22]  李东方. 聚乙烯木塑复合材料性能影响因子与界面特性研究[D]. 北京: 北京林业大学, 2013. LI D F. Study on performance influence factors and interfacial characteristic of PE wood plastic composites[D]. Beijing: Beijing Forestry University, 2013(in Chinese).
[23]  GUO J, TANG Y, XU Z. Performance and thermal behavior of wood plastic composite produced by nonmetals of pulverized waste printed circuit boards[J]. Journal of Hazardous Materials, 2010, 179(1-3): 203-207.
[24]  王海刚, 张京发, 王伟宏, 等. 纤维增强木塑复合材料研究进展[J]. 林业科学, 2016, 52(6): 130-139. WANG H G, ZHANG J F, WANG W H, et al. Research of fiber reinforced wood-plastic composites: A review[J]. Scientia Silvae Sinicae, 2016, 52(6): 130-139(in Chinese).
[25]  崔益华, BAHMAN N, STEPHEN L, 等. 玻璃纤维/木塑混杂复合材料及其协同增强效应[J]. 高分子材料科学与工程, 2006, 22(3): 231-234. CUI Y H, BAHMAN N, STEPHEN L, et al. Glass fiber/wood plastic hybrid composites and their synergistic reinforcing effects[J]. Polymer Materials Science & Engineering, 2006, 22(3): 231-234(in Chinese).
[26]  LIU T M, ZHENG Y S, HU J. Retracted article: Surface modification of aramid fibers with novel chemical approach[J]. Polymer Bulletin, 2011, 66(2): 259-275.
[27]  SA R, YAN Y, WEI Z, et al. Surface modification of aramid fibers by bio-inspired poly(dopamine) and epoxy functionalized silane grafting[J]. ACS Applied Materials & Interfaces, 2014, 6(23): 21730.
[28]  凌新龙, 郭立富, 林海涛. 芳纶纤维的改性研究新进展[J]. 天津工业大学学报, 2016, 35(4): 10-27. LING X L, GUO L F, LIN H T. New research progress in modification of aramid fibers[J]. Journal of Tianjin Polytechnic University, 2016, 35(4): 10-27(in Chinese).
[29]  方立. 连续纤维增强热塑性复合材料制备及其性能的研究[D]. 上海: 华东理工大学, 2012. FANG L. Study om preparation and characters of continuous fiber reinforced thermoplastic composites[D]. Shanghai: East China University of Science and Technology, 2012(in Chinese).
[30]  American Society for Testing and Materials International. Standard test method for flexural properties of unreinforced and reinforced plastics and electrical insulating materials: ASTM D790-03[S]. West Conshohocken: ASTM International, 2003.
[31]  郝建秀, 杜凤, 王伟宏. 短切碳纤维表面处理对木粉/HDPE复合材料性能的影响[J]. 复合材料学报, 2018, 35(2): 298-303. HAO J X, DU F, WANG W H. Surface treatment of short carbon fibers for improving the properties of wood flour/high density polyethylene composite[J]. Acta Materiae Compositae Sinica, 2018, 35(2): 298-303(in Chinese).

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133