|
- 2019
驻极体-增塑剂复合改性聚乳酸熔喷非织造材料的制备及性能
|
Abstract:
分别采用无机纳米SiO2或一种商用有机助剂(O-electret)作为驻极体改性剂,并通过引入环氧大豆油(ESO)和聚乙二醇(PEG)作为增塑剂对聚乳酸(PLA)进行了复合改性,在传统工业熔喷生产线上制备了具有可生物降解特性的驻极体-增塑剂/PLA熔喷非织造复合材料。利用转矩流变仪和熔融指数仪测试了复合改性PLA切片的流动性,发现加入ESO和PEG能使熔融指数提高到110 g/10 min。利用DMA测试了驻极体-增塑剂/PLA熔喷非织造复合材料的力学性能,发现采用增塑剂改性后能显著提高材料的拉伸强度和塑性。利用滤料综合性能测试台测试了的驻极体-增塑剂/PLA熔喷非织造复合材料的过滤性能,结果显示,驻极改性能够使其过滤PM2.5的效率提高至86%及以上。利用SEM研究了驻极体-增塑剂/PLA熔喷非织造复合材料表面的微观形貌,结果表明,采用驻极体改性后,细纤维的比例显著增加;采用增塑剂改性使纤维更细更长,纤维间交错更加复杂。 The Compound modifications of poly(lactic acid)(PLA) were conducted by using nano SiO2 or one organic matter as the electrets (O-electret), and using epoxy soybean oil (ESO) and poly(ethylene) (PEG) as the combined plasticizers, respectively. Then the biodegradable electret-plasticizer/PLA meltblown nonwoven composites were manufactured on a commercial meltblown production line. The melt flowability of modified PLA chips was tested by using a torque rheometer and a melt flow index (MFI) instrument. It is found that addition of ESO and PEG improves the MFI to 110 g/10 min. The mechanical properties of meltblown nonwoven composite were tested by DMA. The relevant results indicate that the strength and plasticity of meltblown nonwoven composites can be remarkably enhanced after being modified by plasticizers. Filter media testing platform was used to evaluate the filtration performance of electret-plasticizer/PLA meltblown nonwoven composites. It is found that introduction of electret could improve the PM2.5 filtration efficiency of that to 86% or more. SEM observations were eventually employed to study the micromorphology of the nonwoven composites, the result shows that the ratio of fine fibers within the PLA meltblown nonwoven has been increased notably after electret modification, and with the help of plasticizers such microscale fibers became relatively longer and finer, hence the interlacement of these fibers turned more complex. 深圳科技项目(JCYJ20160331185322137;JSKF20150831193118543);深圳改革发展计划(SDRC2015-1033
[1] | 于斌, 韩建, 余鹏程. 驻极体对熔喷用PLA材料热性能及可纺性的影响[J]. 纺织学报, 2013, 34(2): 82-85.YU B, HAN J, YU P C. Effect of electret particles on thermal properties and spinnability of PLA meltblown materials[J]. Journal of Textile Research, 2013, 34(2): 82-85(in Chinese). |
[2] | RASAL R M, JANORKAR A V, HIRT D E. Poly(lactic acid) modifications[J]. Progress in Polymer Science, 2015, 35(3): 338-356. |
[3] | JIM L. PLA for nonwoven applications[J]. Technical Textiles, 2006, 24(1): 18-22. |
[4] | Chemical Fibers International Group. PLA for meltblown nonwovens[J]. Melliand International, 2009, 15(5-6): 176. |
[5] | 渠叶红, 柯勤飞, 靳向煜. 熔喷聚乳酸非织造材料工艺与过滤性能研究[J]. 产业用纺织品, 2005(5): 19-22.QU Y H, KE Q F, JIN X Y. Study on the meltblown PLA nonwoven process and filtration property[J]. Technical Textiles, 2005(5): 19-22(in Chinese). |
[6] | 张琦. 驻极体聚乳酸熔喷非织造材料的制备及性能研究[D]. 杭州: 浙江理工大学, 2012.ZHANG Q. The preparation and study on properties of electret polylactic acid meltblown nonwovens[D]. Hangzhou: Zhejiang Sci-Tech University, 2012(in Chinese). |
[7] | 彭鹏, 张瑜, 张伟. 聚乳酸熔喷非织造材料的研究现状及应用领域[J]. 产业用纺织品, 2014(5): 1-5.PENG P, ZHANG Y, ZHANG W. The present research situation and application fields of polylactic acid melt-blown nonwovens[J]. Technical Textiles, 2014(5): 1-5(in Chinese). |
[8] | 杨荆泉, 田涛. 驻极体过滤材料及其在空气净化领域的应用[J]. 环境与健康杂志, 2009, 26(8): 743-745.YANG J Q, TIAN T. Application of electret filtration material in air purification[J]. Journal of Environment and Health, 2009, 26(8): 743-745(in Chinese). |
[9] | 任煜, 李猛, 尤祥银. 驻极体对聚乳酸熔喷材料性能的影响[J]. 纺织学报, 2015, 36(9): 13-16.REN Y, LI M, YOU X Y. Influence of corona eletret treatment on melt-blow PLA nonwovens material[J]. Journal of Textile Research, 2015, 36(9): 13-16(in Chinese). |
[10] | 蔡诚, 唐国翌, 宋国林, 等. 纳米SiO2驻极体/聚乳酸复合熔喷非织造材料的制备及性能[J]. 复合材料学报, 2017, 34(3): 486-493.CAI C, TANG G Y, SONG G L, et al. Preparation and properties of nano-SiO2 electret/PLA composite meltblown nonwovens[J]. Acta Materiae Compositae Sinica, 2017, 34(3): 486-493(in Chinese). |
[11] | HUANG H, CHEN L, SONG G, et al. An efficient plasticization method for poly(lactic acid) by combination use of liquid-state and solid-state plasticizers[J]. Journal of Applied Polymer Science, doi: 10.1002/app.46669. |
[12] | 沈兆宏, 王锐兰, 吴东亮. 单轴取向聚乳酸制品的结晶行为研究[J]. 中国塑料, 2008, 22(8): 13-16.SHEN Z H, WANG R L, WU D L. Crystallization behavior of uniaxially oriented poly(lactic acid)[J]. China Plastic, 2008, 22(8): 13-16(in Chinese). |
[13] | European Committee for Standardization. High efficiency air filters (EPA, HEPA and ULPA) Part 3: Testing flat sheet filter media: EN 1822-3-2009[S]. London: British Standards Institution, 2009. |
[14] | 沈志明. 非织造布在产业领域的发展前景广阔[J]. 非织造布, 2003, 11(2): 3-8.SHEN Z M. Broad development prospect of nonwovens in the industry field[J]. Nonwovens 2003, 11(2): 3-8(in Chinese). |
[15] | SAEIDLOU S, HUNEAULT M A, LI H, et al. Poly(lactic acid) crystallization[J]. Progress in Polymer Science, 2012, 37(12): 1657-1677. |
[16] | 赵永霞. 纺粘和熔喷技术的发展与应用[J]. 纺织导报, 2008(10): 40-52.ZHAO Y X. Development and application of spunbond and meltblown technology[J]. China Textile Leader, 2008(10): 40-52(in Chinese). |
[17] | WANG S, MA P, WANG R, et al. Mechanical, thermal and degradation properties of poly(d, l-lactide)/poly(hydroxybutyrate-co-hydroxyvalerate)/poly(ethylene glycol) blend[J]. Polymer Degradation & Stability, 2008, 93(7): 1364-1369. |
[18] | FANG Q, HANNA M A. Rheological properties of amorphous and semicrystalline polylactic acid polymers[J]. Industrial Crops and Products, 1999, 10(1): 47-53. |
[19] | 唐敏. 驻极体过滤材料对PM(2.5)过滤性能的研究[D]. 广州: 华南理工大学, 2016.TANG M. Study of filtration characteristics of electret filter media against PM2.5[D]. Guangzhou: South China University of Technology, 2016(in Chinese). |
[20] | 李景德. 极性材料进展述评[J]. 材料导报, 1992(4): 1-6.LI J D. Progress review of polar material[J]. Materials Review, 1992(4): 1-6(in Chinese). |
[21] | DIETER H M, ANDREAS K. Meltblown fabrics from biodegradable polymers[J]. International Nonwoven Journal, 2001, 10(1): 11-16. |
[22] | 刘亚. 熔喷静电纺复合法聚乳酸非织造的制备及过滤性能研究[D]. 天津: 天津大学, 2009.LIU Y. Study on preparation and filtration property of PLA nonwovens via meltblown/eletro-spinning[D]. Tianjin: Tianjin University, 2009(in Chinese). |
[23] | 魏淳, 李光. 聚乳酸纤维的发展过程及现状[J].产业用纺织品, 2005(7): 8-11.WEI C, LI G. The development and current situation of polylactic acid fibers[J]. Techniacal Textiles, 2005(7): 8-11(in Chinese). |
[24] | RASAL R M, HIRT D E. Toughness decrease of PLA-PHBHHx blend films upon surface-confined photo polymerization[J]. Journal of Biomedical Materials Research Part A, 2008, 88A: 1079-1086. |
[25] | HILJANEN-VAINIO M, VARPOMAA P, SEPP?L? J, et al. Modification of poly(L-lactides) by blending: Mechanical and hydrolytic behavior[J]. Macromolecular Chemistry and Physics, 1996, 197(4): 1503-1523. |
[26] | 夏钟福. 聚合物驻极体气体和空气过滤材料在环境净化工程中的研究及进展[J]. 材料导报, 2011, 15(8): 57-58.XIA Z F. Development of polymeric electret air/gas filter materials applied in environmental clean-up engineering[J]. Materials Review, 2011, 15(8): 57-58(in Chinese). |
[27] | DAI X, XIONG Z, NA H, et al. How does epoxidized soybean oil improve the toughness of microcrystalline cellulose filled polylactide acid[J]. Comosites Science and Technology, 2014, 90: 9-15. |
[28] | ZHANG J, WANG S, ZHAO D, et al. Improved processability and performance of biomedical devices with poly(lactic acid)/poly(ethylene glycol) blends[J]. Journal of Applied Polymer Science, 2017, 134(33): 45194. |
[29] | ASTM International. Standard test method for melt flow rates of thermoplastics by extrusion plastometer: ASTM D1238-13[S]. ASTM International, 2013. |
[30] | KULINSKI Z, PIORKOWSKA E. Crystallization, structure and properties of plasticized poly(L-lactide)[J]. Polymer, 2005, 46(23): 10290-10300. |