全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2019 

石英纤维布/含乙烯基聚硅氮烷耐高温透波复合材料的制备与性能
Preparation and properties of quartz fiber cloth/vinyl-containing polysilazane high temperature wave-penetrating composites

DOI: 10.13801/j.cnki.fhclxb.20180925.003

Keywords: 聚硅氮烷,耐高温,透波,复合材料,力学性能,介电性能
polysilazane
,high-temperature,wave-penetrating,composites,mechanical properties,dielectric properties

Full-Text   Cite this paper   Add to My Lib

Abstract:

在对含乙烯基聚硅氮烷(PSN1)树脂基本性能研究的基础上,以石英纤维布为增强材料,利用层压法制备了石英纤维布/含乙烯基聚硅氮烷耐高温透波复合材料(QF/PSN1),并对其在室温和高温下的力学性能及介电性能进行了测试与表征。研究结果表明:PSN1树脂工艺性能良好,黏度低于1 Pas(60~151℃),固化温度小于200℃;耐热性能优异,在N2和空气氛围下,其固化物失重5%时的温度均高于480℃、800℃时的残重均高于76%。QF/PSN1复合材料力学性能优异,弯曲强度和层间剪切强度随温度升高出现先下降后上升的趋势;450℃烘烤10 min后,其弯曲强度仍在120 MPa以上。QF/PSN1复合材料介电性能优异:在1~12 GHz范围内,QF/PSN1复合材料在室温~450℃范围内介电常数(ε)均低于3.2,介电损耗(tanδ)均小于0.01。上述研究结果表明:含乙烯基聚硅氮烷作为耐高温透波材料的新型树脂基体具有重要的应用价值。 Based on the study of the basic properties of vinyl-containing polysilazane (PSN1) resin, a polysilazane-based high-temperature wave-penetrating composite quartz fiber/PSN1(QF/PSN1) was fabricated by laminated pressing method using quartz fiber cloth as the reinforcing material. The mechanical properties and dielectric properties of the QF/PSN1 composites at room and high temperature were investigated. The results show that PSN1 resin has excellent processing ability with viscosity lower than 1 Pas between 60℃ and 151℃, and low curing temperature less than 200℃. The cured PSN1 resin exhibits high thermal stability T5% (the temperature at which the mass of the resin lost 5%) above 480℃ and WR (the mass residual fraction) above 76% at 800℃ in both N2 and air atmosphere. The flexural strength and interlaminate shear strength (ILSS) of QF/PSN1 composites show a trend of decreasing first and then increasing with the rising of temperature. And the flexural strength is more than 120 MPa after holding for 10 min at 450℃, which demonstrates that the QF/PSN1 composites possess excellent mechanical properties. QF/PSN1 composites show superior dielectric properties with dielectric constant (ε) lower than 3.2 and dielectric loss (tanδ) all less than 0.01 from room temperature to 450℃ in the frequency range of 1~12 GHz. The above studies indicate that PSN1 resin has high potentials as a new type of resin matrix for the high-temperature wave-penetrating composites

References

[1]  陈虹, 张联盟, 罗文辉. 透微波陶瓷材料的研究现状[J]. 陶瓷学报, 2003, 24(3):189-192. CHEN H, ZHANG L M, LUO W H. Present status on the microwave-transmitting ceramic materials[J]. Journal of Ceramics, 2003, 24(3):189-192(in Chinese).
[2]  HOU Z L, CAO M S, YUAN J, et al. High-temperature conductance loss dominated defect level in h-BN:Experiments and first principles calculations[J]. Journal of Applied Physics, 2009, 105(7):3.
[3]  房晓勇, 曹茂盛, 侯志灵, 等. SiO2/SiO2复合材料高温介电性能演变规律及温度特性研究[J]. 材料工程, 2007(3):28-41. FANG X Y, CAO M S, HOU Z L, et al. Research of dielectric properties for silicon dioxide composite at high temperature[J]. Materials Engineering, 2007(3):28-41(in Chinese).
[4]  HOU Z L, CAO M S, YUAN J, et al. Temperature-frequency dependence and mechanism of dielectric properties for gamma-Y2Si2O7[J]. Chinese Physics B, 2010, 19(1):510-514.
[5]  RIBEIRO L F B, FLORES O, FURTAT P, et al. A novel PAN/silazane hybrid polymer for processing of carbon-based fibers with extraordinary oxidation resistance[J]. Journal of Materials Chemistry A, 2017, 5(2):720-729.
[6]  PENN B G, DANIELS J G, LⅡ F E L, et al. Preparation of silicon carbide-silicon nitride fibers by the pyrolysis of polycarbosilazane precursors[J]. Polymer Engineering and Science, 2010, 27(10):3751-3761.
[7]  KIM K, JU H, KIM J. Pyrolysis behavior of polysilazane and polysilazane-coated-boron nitride for high thermal conductive composite[J]. Composites Science Technology, 2017, 141:1-7.
[8]  GREIL P. Polymer derived engineering ceramics[J]. Advanced Engineering Materials, 2000, 2(6):339-348.
[9]  全国纤维增强塑料标准化技术委员会. 玻璃纤维增强塑料拉伸性能试验方法:GB/T 1447-2005[S]. 北京:中国标准出版社, 2005. National Technical Committee for the Standardization of Fiber-reinforced Plastics. Fiber-reinforced plastics composites-Determination of tensile properties:GB/T 1447-2005[S]. Beijing:China Standard Press, 2005(in Chinese).
[10]  全国纤维增强塑料标准化技术委员会. 纤维增强塑料层合板冲击后压缩性能试验方法:GB/T 21239-2007[S]. 北京:中国标准出版社, 2007. National Technical Committee for the Standardization of Fibro-reinforced Plastics. Test method for compression after impact properties of fiber reinforced plastic laminates:GB/T 21239-2007[S]. Beijing:China Standard Press, 2007(in Chinese).
[11]  TRASSL S, SUTTOR D, MOTZ G, et al. Structural characterisation of silicon carbonitride ceramics derived from polymeric precursors[J]. Journal of European Ceramic Society, 2000, 20(2):215-225.
[12]  GE Z, TAO Z, LIU J, et al. Synthesis and characterization of novel trifunctional fluorine containing epoxy resins based on 1,1,1-tris(2,3-epoxypropoxyphenyl)-2,2,2-trifluoroethane[J]. Polymer Journal, 2007, 39(11):1135-1142.
[13]  WANG M, WEI L, ZHAO T. A novel condensation-addition-type phenolic resin (MPN):Synthesis, characterization and evaluation as matrix of composites[J]. Polymer, 2005, 46(21):9202-9210.
[14]  LIN S P, SHEN J H, HAN J L, et al. Volume shrinkages and mechanical properties of various fiber-reinforced hydroxyethyl methacrylate-polyurethane/unsaturated polyester composites[J]. Composites Science and Technology, 2008, 68(3):709-717.
[15]  张亮, 金海波, 曹茂盛. SiO2陶瓷复合材料高温介电性能研究[J]. 稀有金属材料与工程, 2007, 9(36):515-518. ZHANG L, JIN H B, CAO M S. Investigation on high-temperature dielectric properties of SiO2 composite materials[J]. Rare Metal Materials and Engineering, 2007, 9(36):515-518(in Chinese).
[16]  LI Y L, KROBE E, RIEDEL R, et al. Thermal cross-linking and pyrolytic conversion of poly(ureamethylvinyl)silazanes to silicon-based ceramics[J]. Applied Organometallic Chemistry, 2001, 15(10):820-832.
[17]  LUO Z, WEI L, LIU F, et al. Study on thermal cure and heat-resistant properties of N-(3-acetylenepheny)maleimide monomer[J]. European Polymer Journal, 2007, 43(8):3461-3470.
[18]  COMER A C, KALIKA D S, ROWE B W, et al. Dynamic relaxation characteristics of Matrimid? polyimide[J]. Polymer, 2009, 50(3):891-897.
[19]  HOU Z L, ZHANG L, YUAN J, et al. High-temperature dielectric response and multiscale mechanism of SiO2/Si3N4 anocomposites[J]. Chinese Physics Letters, 2008, 25(6):2249-2252.
[20]  李金刚, 曹茂盛, 张永, 等. 国外透波材料高温电性能研究进展[J]. 材料工程, 2005(2):59-62. LI J G, CAO M S, ZHANG Y, et al. Research progress in high temperature electric properties of foreign wave-transmitting materials[J]. Materials Engineering, 2005(2):59-62(in Chinese).
[21]  熊兰天, 金海波, 曹茂盛, 等. 烧蚀条件下SiO2/SiO2复合材料中防潮剂的演变行为研究[J]. 材料工程, 2007(2):11-14. XIONG L T, JIN H B, CAO M S, et al. Study on evolution behavior of damp-proofing admixture under ablation in SiO2/SiO2 composites[J]. Materials Engineering, 2007(2):11-14(in Chinese).
[22]  CAO M S, HOU Z L, YUAN J, et al. Low dielectric loss and non-Debye relaxation of gamma-Y2Si2O7 ceramic at elevated temperature in X-band[J]. Journal of Applied Physics, 2009, 105(10):3575.
[23]  SEO Y, CHO S, KIM S, et al. Synthesis of refractive index tunable silazane networks for transparent glass fiber reinforced composite[J]. Ceramics International, 2017, 43(10):7895-7900.
[24]  LIU J, QIAO Y L, ZHANG P, et al. Synthesis of SiC ceramics from polysilazane by laser pyrolysis[J]. Surface and Coatings Technology, 2017, 321:491-495.
[25]  MARSHALL D W. Radomes based on novel inorganic polymer composites[J]. Sampe Journal, 2001, 37(5):53-58.
[26]  QI G, ZHANG C, HU H. High strength three-dimensional silica fiber reinforced silicon nitride-based composites via polyhydridomethylsilazane pyrolysis[J]. Ceramics International, 2007, 33(5):891-894.
[27]  HU L, XU C, LUO Y, et al. A polysilazane coating protecting polyimide from atomic oxygen and vacuum ultraviolet radiation erosion[J]. Surface and Coatings Technology, 2009, 203:3338-3343.
[28]  全国纤维增强塑料标准化技术委员会. 纤维增强塑料弯曲性能试验方法:GB/T 1449-2005[S]. 北京:中国标准出版社, 2005. National Technical Committee for the Standardization of Fibro-reinforced Plastics. Fiber-reinforced plastics composites-Determination of flexural properties:GB/T 1449-2005[S]. Beijing:China Standard Press, 2005(in Chinese).
[29]  全国纤维增强塑料标准化技术委员会. 纤维增强塑料层间剪切强度试验方法:GB/T 1450.1-2005[S]. 北京:中国标准出版社, 2005. National Technical Committee for the Standardization of Fiber-reinforced Plastics. Fiber-reinforced plastics composites-Determination of interlaminate shear strength:GB/T 1450.1-2005[S]. Beijing:China Standard Press, 2005(in Chinese).
[30]  TRAβL S, SUTTOR D, MOTZ G, et al. Structural characterisation of silicon carbonitride ceramics derived from polymeric precursors[J]. Journal of the European Ceramic Society, 2000, 20(2), 215-225.
[31]  张宗波. 聚硅氮烷透波材料的研究[D]. 北京:中国科学院化学研究所, 2012. ZHANG Z B. Polysilazane-based wave-penetrating materials[D]. Beijing:Institute of Chemistry Chinese Academy of Sciences, 2012(in Chinese).
[32]  KOJIMA A, HOSHⅡ S, MUTO T. Characteristics of polysilazane compound and its application as coating for carbon material[J]. Journal of Materials Science Letters. 2002, 21(10):757-760.
[33]  TUCKER SJ, FU B, KAR S, et al. Ambient cure poss-epoxy matrices for marine composites[J]. Composite Part A:Applied Science and Manufacturing, 2010, 41(10):1441-1446.
[34]  CAO M S, JIN H B, LI J G, et al. Ablated Transformation and dielectric of SiO2/SiO2 nanocomposites dipped with silicon resin[J]. Key Engineering Materials, 2007, 336-338:1239-1241.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133