全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2019 

多巴胺改性聚苯硫脲与聚偏氟乙烯共混复合材料的制备与性能
Preparation and properties of polyphenylthiourea-poly(vinylidene fluoride) composites modified by dopamine

DOI: 10.13801/j.cnki.fhclxb.20181023.003

Keywords: 聚苯硫脲,多巴胺,击穿场强,介电损耗,储能密度
polyphenylthiourea(ArPTU)
,dopamine(DA),breakdown field strength,dielectric loss,energy storage density

Full-Text   Cite this paper   Add to My Lib

Abstract:

聚苯硫脲(ArPTU)是一种新型高击穿、低损耗的材料,为提高其储能密度,在与聚偏氟乙烯(PVDF)共混的过程中,如何提高其溶解性,降低界面问题,成为研究热点之一。利用多巴胺(DA)对其进行改性可以有效地改善其与PVDF的界面问题。采用溶液流延热压的方法制备出不同共混比的多巴胺改性聚苯硫脲共混聚偏氟乙烯(DA/ArPTU-PVDF)复合薄膜。并采用X射线衍射仪、扫描电子显微镜、核磁共振、凝胶渗透色谱、阻抗分析仪等对其进行表征。结果表明:当DA/ArPTU-PVDF中DA/ArPTU质量分数为10wt%~15wt%时,PVDF的β晶型相对含量显著增加,这是其介电性能增加的主要原因之一;100 Hz时,介电常数最大可以达到10.3(10wt% DA/ArPTU),同时介电损耗降低,最低达到了0.008(25wt% DA/ArPTU)。复合材料的储能密度也有明显提高,最大可以达3.0 J/cm3(10wt% DA/ArPTU),相对于纯PVDF提高了63.3%。此外,复合材料的击穿特性相比于纯PVDF具有很大的提高,最大可达556.4MV/m(15wt% DA/ArPTU)。而且,改性后的复合材料力学性能也有了很大的提高。最大断裂伸长率可以达到196.7%(5wt% DA/ArPTU),展现出了柔性高击穿储能材料的潜力。 Polyphenylthiourea (ArPTU) is a new type of high breakdown, low loss material. In order to improve its energy storage density, ArPTU can be blended with poly(vinylidene fluoride)(PVDF). The problem that how to improve its solubility and reduce the interface during blending with PVDF has become one of the research hotspots. Modification with dopamine (DA) can effectively improve its interface with PVDF. DA modified ArPTU-PVDF(DA/ArPTU-PVDF) composite films with different blending ratios were prepared by solution casting hot pressing method and characterized by X-ray diffractometry, scanning electron microscopy, nuclear magnetic resonance, gel permeation chromatography and impedance analyzer. The results show that when the mass fraction of DA/ArPTU is 10wt%-15wt%, the relative content of β crystal form of PVDF increases remarkably, which is one of the main reasons for the increase of dielectric properties. At 100 Hz, the dielectric constant can be the largest. It reaches 10.3 (10wt% DA/ArPTU), while the dielectric loss decreases, and the minimum reaches 0.008 (25wt% DA/ArPTU). The energy storage density of the composite material also increases significantly, up to 3.0 J/cm3 (10wt% DA/ArPTU), which is 63.3% higher than that of the pure PVDF. In addition, the breakdown characteristics of the composites are greatly improved compared to the pure PVDF, up to 556.4 MV/m (15wt% DA/ArPTU). Moreover, the mechanical properties of the modified composites have also been greatly improved. The maximum elongation at break can reach 196.7% (5wt% DA/ArPTU), showing the potential of flexible high breakdown energy storage materials. 国家自然科学基金(51272191;51372181;51672198

References

[1]  唐萍, 张荣, 陈志强, 等. 碳纳米管-聚乙烯复合材料的介电性能[J]. 功能高分子学报, 2016(03):290-295. TANG Ping, ZHANG Rong, CHEN Zhiqiang, et al. Dielectric properties of carbon nanotubes-polyethylene comosites[J]. Journal of Functional Polymers, 2016(03):290-295(in Chinese).
[2]  位姣姣. 高储能密度电容器用聚合物薄膜介电击穿特性研究[D]. 成都:电子科技大学, 2015. WEI Jiaojiao, Study of high storage energy density capacitor dielectric breakdown with polymer film characteristic[D]. Chengdu:University of Electronic Science and Technology, 2015(in Chinese).
[3]  顾逸韬, 刘宏波, 马海华, 等. 电介质储能材料研究进展[J]. 绝缘材料, 2015(11):1-7. GU Yitao, LIU Hongbo, MA Haihua, et al. Research progress of dielectric materials for energy storage[J]. Insulation Materials, 2015(11):1-7(in Chinese).
[4]  谢金龙, 李艳霞, 初振明, 等. 超级电容器储能材料的研究进展[J]. 材料导报, 2012(15):14-18. XIE Jinlong, LI Yanxia, CHU Zhenming, et al. Research progress on storage materials of supercapacitor[J]. Material Guide, 2012(15):14-18(in Chinese).
[5]  武利顺, 孙俊芬, 王庆瑞. 聚偏氟乙烯膜研究进展[J]. 膜科学与技术, 2004(05):63-68. WU Lishun, SUN Junfen, WANG Qingrui, et al. Research progress on poly(vinylidene fluoride) film[J]. Membrane Science and Technology, 2004(05):63-68(in Chinese).
[6]  王金龙, 王文一, 史菁元, 等. 多壁碳纳米管/聚偏氟乙烯高介电常数复合材料的制备与性能[J]. 复合材料学报, 2015(5):1355-1360. WANG Jinlong, WANG Wenyi, SHI Jingyuan, et al. Preparation and properties of multi-walled carbon nanotubes/poly(vinylidene fluoride) high dielectric constant composites[J]. Acta Materiae Compositae Sinica, 2015(5):1355-1360(in Chinese).
[7]  赵小佳, 冯海悦, 战再吉, 等. 聚碳酸酯对聚偏氟乙烯-六氟丙烯共聚物结构和介电性能影响的研究[J]. 燕山大学学报, 2015(4):306-311. ZHAO Xiaojia, FENG Haiyue, ZHAN Zaiji, et al. Study on the effect of polycarbonate on the structure and dielectric porperties of poly(vinylidenefluoride)-hexa(fluoropropylene) copolymer[J]. Journal of Yanshan University, 2015(4):306-311(in Chinese).
[8]  TAN S, HU X, DING S, et al. Significantly improving dielectric and energy storage properties via uniaxially stretching crosslinked P(VDF-co-TrFE) films[J]. Journal of Materials Chemistry A, 2013, 1(35):10353.
[9]  WANG J, JIN K, HE F, et al. A new polymer with low dielectric constant based on trifluoromethyl-substituted arene:Preparation and properties[J]. RSC Advances, 2014, 4(77):40782-40787.
[10]  高圣涛, 徐国财, 姚宝慧, 等. 纳米银/PAMPS复合材料的微波合成及表征[J]. 复合材料学报, 2012, 29(3):54-58. GAO S T, XU G C, YAO B H, et al. Synthesis and characterization of nano-silver/PAMPS composites by microwave radiation[J]. Acta Materiae Compositae Sinica, 2012, 29(3):54-58(in Chinese).
[11]  QIAN Z, ZHANG H, WANG S, et al. Research progress of microwave technology in the applications of adsorption separation[J]. New Chemical Materials, 2018, 46(2):272-274.
[12]  董丽杰, 熊传溪, 陈娟, 等. 聚偏氟乙烯-钛酸钡复合材料的介电性能[J]. 复合材料学报, 2003(3):122-126. DONG Lijie, XIONG Chuanxi, CHEN Juan, et al. Dielectric property of BaTiO3/PVDF composite prepared by a melt process[J]. Acta Materiae Compositae Sinica, 2003(3):122-126(in Chinese).
[13]  郑明胜, 查俊伟, 党智敏. 新型高储能密度聚合物基绝缘材料[J]. 电工技术学报, 2017(16):37-43. ZHENG Mingsheng, ZHA Junwei, DANG Zhimin, Advanced polymer-based insulation materials with high energy storage dsnsity[J]. Journal of Electrotechnics, 2017(16):37-43(in Chinese).
[14]  LI W, JIANG L, ZHANG X, et al. High-energy-density dielectric films based on polyvinylidene fluoride and aromatic polythiourea for capacitors[J]. Journal of Materials Chemistry A, 2014, 2(38):15803-15807.
[15]  WU S, LI W, LIN M, et al. Aromatic polythiourea dielectrics with ultrahigh breakdown field strength, low dielectric loss, and high electric energy density[J]. Advanced Materials, 2013, 25(12):1734-1738.
[16]  THAKUR V K, LIN M, TAN E J, et al. Green aqueous modification of fluoropolymers for energy storage applications[J]. Journal of Materials Chemistry, 2012, 22(13):5951-5959.
[17]  焦晓燕, 孙喜龙, 王春, 等. 微波化学合成研究进展[J]. 河北北方学院学报(自然科学版), 2011(03):21-25. JIAO Xiaoyan, SUN Xilong, WANG Chun, et al. Progress in chemosynthesis under microwave irradiation[J]. Journal of Hebei North University, 2011(03):21-25(in Chinese).
[18]  程文静, 郑成, 毛桃嫣, 等. 十八烷基甲基二羟乙基溴化铵的微波合成及性能[J]. 化工学报, 2011(2):566-573. CHENG Wenjing, ZHENG Cheng, MAO Taoyan, et al. Microwave synthesis technique and properites of cctadecylmethyldihydroxyethyl ammonium bromide[J]. CIESC Journal, 2011(2):566-573(in Chinese).
[19]  张科, 王鹏, 李文科, 等. 聚乳酸的微波辐射合成方法研究[J]. 高分子材料科学与工程, 2004(03):46-48. ZHANG Ke, WANG Peng, LI Wenke, et al. Study on microwave radiation synthesis of polylactic acid[J]. Polymer Materials Science and Engineering, 2004(03):46-48(in Chinese).
[20]  WANG Y, LI X, TIAN Y. Progress in microwave synthesis of ionic liquid[J]. New Chemical Materials, 2016, 44(9):33-35.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133