|
- 2019
液态SiBCN前驱体转化陶瓷的抗氧化性能及机制
|
Abstract:
前驱体转化法制备的SiBCN陶瓷具有优异的耐高温抗氧化性能,有望作为高温热结构材料应用于航空航天领域。本文主要对前驱体转化法制备的SiBCN陶瓷在1 200、1 400℃下的抗氧化性能进行研究。采用XPS对陶瓷氧化前后化学键结合方式进行表征,分析了氧化前后化学结构的变化;采用XRD和SEM对陶瓷氧化前后表面相组成、微观形貌和截面氧化层进行分析,并通过氧化层厚度随时间变化对高温抗氧化动力学进行了研究。结果表明:SiBCN陶瓷经高温氧化后在表面形成了致密的氧化膜,氧化层主要以无定形态存在,且与基体结合紧密;陶瓷的高温氧化速率受氧扩散控制,其在1 200、1 400℃下的氧化动力学常数分别为0.0224 μm2/h和0.1045 μm2/h,小于SiC陶瓷的0.0449 μm2/h和0.1288 μm2/h。由于SiBCN陶瓷形成的BN (C)结构以及高温氧化后形成的SiOxNy致密氧化膜降低了氧气在氧化层中的扩散速率以及反应活性,使得SiBCN陶瓷具有比SiC陶瓷更加优异的高温抗氧化性能。 SiBCN ceramic shows excellent thermal stability, oxidation resistance and crystallization resistance. The oxidation behavior of SiBCN ceramics, derived from pyrolysis of polymeric precursor, was studied at 1 200℃ and 1 400℃ in air atmosphere. XPS was used to characterize the chemical bonding of SiBCN ceramic before and after oxidation experiments. XRD and SEM were employed to analyze the phase composition and microstructure of SiBCN ceramic before and after oxidation experiments. The oxidation kinetics was studied by measuring the thickness of oxide layers via SEM. The results show that, after oxidation experiments, dense protective oxide layers form on the surface of SiBCN ceramic to prevent further oxidation. And the diffusion of oxidant through the oxide layers is the rate-controlling process. The oxide layers thickness of SiBCN ceramic growth at 1 200 and 1 400℃ in air can be approximated by a parabolic rate law with rate constants of 0.0224 μm2/h and 0.1045 μm2/h, respectively. Which was thinner than SiC ceramic with rate constants of 0.0449 μm2/h and 0.1288 μm2/h, respectively. The BN(C) structure and the formed of dense SiOxNy layers made SiBCN ceramic have excellent oxidation resistance
[1] | 王守仁, 王高琦, 杨学锋, 等. 基于第一抗热震因子的BN纳米管/Si3N4复合材料抗热震性能评价. 复合材料学报, 2017, 34(07):1575-1581.WANG S, WANG G, YANG X, et al. Evaluation of thermal shock resistance of BNNTs/Si3N4 composites based on first heat shock factor[J]. Acta Materiae Compositae Sinica, 2017, 34(7):1575-1581(in Chinese). |
[2] | ROY J, CHANDRA S, DAS S, et al. Oxidation behaviour of silicon carbide-A review[J]. Reviews on Advanced Materials Science, 2014, 38:29-39. |
[3] | BALDUS P, JANSEN M, SPORN D. Ceramic fibers for matrix composites in high-temperature engine applications[J]. Science, 1999, 285(5428):699-703. |
[4] | WANG X, WANG H, SHI J. Synthesis, characterization, and ceramic conversion of a liquid polymeric precursor to SiBCN ceramic via borazine-modified polymethylsilane[J]. Journal of Materials Science, 2018:53(16):11242-11252. |
[5] | WEIQI HE, CHEN L, TINGTING X U, et al. Borazine-type single source precursor with vinyl to SiBCN ceramic[J]. Journal Ceramic Society of Japan, 2018, 126(4):253-259. |
[6] | LU B, ZHANG Y. Oxidation behavior of SiC-SiBCN ceramics[J]. Ceramics International, 2015, 41(1):1023-1030. |
[7] | PASSING H P B G. Studies on SiBN(C)-ceramics:oxidation-and crystallization behavior lead the way to applications[J]. Mrs Proceedings, 1994, 346:617-622. |
[8] | BUTCHEREIT E, NICKEL K G, MVLLER A. Precursor-derived Si-B-C-N ceramics:oxidation kinetics[J]. Journal of the American Ceramic Society, 2010, 84(10):2184-2188. |
[9] | YANG Z H, ZHOU Y, JIA D C, et al. Microstructures and properties of SiB0.5C1.5N0.5 ceramics consolidated by mechanical alloying and hot pressing[J]. Materials Science & Engineering A, 2008, 489(1):187-192. |
[10] | 张义强, 董志军, 左小华, 等. 聚碳硅烷热解产物抗氧化性能的研究[J]. 武汉科技大学学报:自然科学版, 2012, 35(4):289-292. ZHANG Yi qiang, DONG Zhi jun, ZUO Xiao hua, et al. Anti-oxidation property of the pyrolysis products from polycarbosilane[J]. Wuhan University of Science Technology, 2012, 35(4):289-292. |
[11] | LEI M K, LI Q, ZHOU Z F, et al. Characterization and optical investigation of BCN film deposited by Rf magnetron sputtering[J]. Thin Solid Films, 2001, 389(1):194-199. |
[12] | KVNZLI H, GANTENBEIN P, STEINER R, et al. Deposition and characterization of thin boron-carbide coatings[J]. Fresenius Journal of Analytical Chemistry, 1993, 346(1):41-44. |
[13] | XIONG Y H, XIONG C S, WEI S Q, et al. Study on the bonding state for carbon boron nitrogen with different ball milling time[J]. Applied Surface Science, 2006, 253(5):2515-2521. |
[14] | OGBUJI LUJT, OPILA E J. A comparison of the oxidation kinetics of SiC and Si3N4[J]. Journal of the Electrochemical Society, 1995, 142(3):925. |
[15] | KLEMM H, HERRMANN M, REICH T, et al. High temperature properties of Si3N4, materials[J]. Journal of the European Ceramic Society, 2011, 31(13):2387-2392. |
[16] | RIEDEL R, KIENZLE A, DRESSLER W, et al. A silicoboron carbonitride ceramic stable to 2000℃[J]. Nature, 1996, 382(6594):796-798. |
[17] | LIANG B, YANG Z H, JIA D C, et al. Amorphous silicoboron carbonitride monoliths resistant to flowing air up to 1800℃[J]. Corrosion Science, 2016, 109:162-173. |
[18] | LI D, YANG Z, JIA D, et al. High-temperature oxidation behavior of dense SiBCN monoliths:carbon-content dependent oxidation structure, kinetics and mechanisms[J]. Corrosion Science, 2017, 124:103-120. |
[19] | CINIBULK M K, PARTHASARATHY T A. Characterization of oxidized polymer derived SiBCN fibers[J]. Journal of the American Ceramic Society, 2001, 84(10):2197-2202. |
[20] | WEINMANN M, SCHUHMACHER J, KUMMER H, et al. Synthesis and thermal behavior of novel Si-B-C-N ceramic precursors[J]. Chemistry of materials, 2000, 12(3):623-632. |
[21] | ZHANG Z, ZENG F, HAN J, et al. Synthesis and characterization of a new liquid polymer precursor for Si-B-C-N ceramics[J]. Journal of Materials Science, 2011, 46(18):5940-5947. |
[22] | BOYD K J, MARTON D, TODOROV S S, et al. Formation of C-N thin films by ion beam deposition[J]. Journal of Vacuum Science & Technology A, 1995, 13(4):2110-2122. |
[23] | LIU F, KONG J, LUO C, et al. High temperature self-healing SiBCN ceramics derived from hyperbranched polyborosilazanes[J]. Advanced Composites & Hybrid Materials, 2018, 1(3):1-12. |
[24] | SEIFERT H J, LUKAS H L, ALDINGER F. Development of Si-B-C-N ceramics supported by phase diagrams and thermochemistry[J]. Ber Burrenges Phy Chem, 1998, 102(9):1309-1313. |
[25] | DU H. Oxidation studies of crystalline CVD silicon nitride[J]. Journal of the Electrochemical Society, 1989, 136(5):1527-1536. |