全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2019 

复合材料带筋壁板预成型体压缩性与渗透性对树脂流动的影响
Effect of compaction and permeability of the composite stiffened panel preform on resin flow

DOI: 10.13801/j.cnki.fhclxb.20180419.001

Keywords: 带筋壁板,单向织物,压缩,渗透率,PAM-RTM,流动模拟
stiffened panel
,unidirectional fabrics,compaction,permeability,PAM-RTM,flow simulation

Full-Text   Cite this paper   Add to My Lib

Abstract:

以航空碳纤维增强树脂基复合材料典型结构件带筋壁板为研究对象,通过对U3160单向织物的组织结构进行分析,根据纤维束的受压变形状态对其压缩响应进行理论建模,然后以纤维束压缩模型为基础,预测了U3160单向织物按0°/45°/90°/-45°铺层时预成型体在压缩应力作用下厚度变化的响应行为。建立了压缩应力作用下纤维预成型体的渗透率解析模型:在织物压缩模型的基础上,建立了纤维束等效渗透率模型;根据张量理论,分别建立了0°、±45°和90°铺层织物等效渗透率模型;运用渗透介质串并联关系,建立了带筋壁板各特征区域渗透率综合表征模型。基于PAM-RTM流动模拟软件,进行分区渗透率定义,在充模过程中对树脂在带筋壁板预成型体中的流动行为进行模拟,优化工艺参数,确定出最终充模方案,并制作带筋壁板实验缩比件进行成型实验,验证了充模方案的合理性。研究结果为制件的成功制作提供理论依据,从而指导生产实践。 The stiffened panel of the typical aerospace carbon fiber reinforced polymer composite structure was studied by analyzing the characteristics of the U3160 unidirectional fabric organization structure. The compression response of the fiber bundle was theoretically modeled according to the compression deformation state of the fiber bundle. Based on the fiber bundle compression model, the thickness change responses of the U3160 unidirectional fabric preform with the 0°/45°/90°/-45°stacking sequence under the influence of compressive stress were forecasted. The permeability model of the fabric preform under the effect of compression stress was formed. Based on the fabric compression model, the equivalent permeability model of fiber bundle was established. According to the tensor theory, the equivalent permeability model of the 0°, ±45° and 90° ply fabric was established respectively. By using the series-parallel relationship of permeable media, the comprehensive characterization model of permeability in each characteristic zone of stiffened panel was established. Based on the PAM-RTM flow simulation software, the permeability of the partition zone was defined, the flowing behavior of resin in the stiffened-panel fabric preforms was simulated during the filling process, the technological parameters was optimized to determine the final filling program, and the models of stiffened panel were made to carry out the molding experiment to verify the rationality of filling program. The work provides the theoretical basis for the successful production, which can be used to finally guide the practice. 中央高校基本科研业务费专项资金(3102017jg02012);中国博士后科学基金(2017M613209

References

[1]  陈静, 程文礼, 李贤德. 通用飞机复合材料结构低成本制造技术[J]. 新材料产业, 2017(12):10-13. CHEN Jing, CHENG Wenli, LI Xiande. Low cost manufacturing technology for composite structure of general aircraft[J]. Advanced Materials Industry, 2017(12):10-13(in Chinese).
[2]  孙振起, 吴安如. 先进复合材料在飞机结构中的应用[J]. 材料导报, 2015, 29(11):61-64. SUN Zhenqi, WU Anru. Application of advanced composite in aircraft structures[J]. 2015, 29(11):61-64(in Chinese).
[3]  杜善义. 先进复合材料与航空航天[J]. 复合材料学报, 2007, 24(1):1-12. DU Shanyi. Advanced composite materials and aerospace engineering[J]. Acta Materiae Compositae Sinica, 2007, 24(1):1-12(in Chinese).
[4]  段振锦. 热压预成型参数对真空辅助成型复合材料性能的影响[D]. 上海:东华大学, 2017. DUAN Zhenjin. Effects of parameters preformed with hot press on the properties of composites manufactured with vacuum assisted resin infusion[D]. Shanghai:Donghua University, 2017(in Chinese).
[5]  杨金水, 肖加余, 曾竟成, 等. 真空导入模塑工艺中织物预成型体的可压缩性[J]. 复合材料学报, 2011, 28(6):1-7. YANG Jinshui, XIAO Jiayu, ZENG Jingcheng, et al. Compressibility of fabric preforms in vacuum infusion molding process[J]. Acta Materiae Compositae Sinica, 2011, 28(6):1-7(in Chinese).
[6]  LIN H, SHERBURN M, CROOKSTON J, et al. Finite element modelling of fabric compression[J]. Modelling & Simulation in Materials Science & Engineering, 2008, 16(3):697-704.
[7]  方良超. 嵌套效应对织物压缩性及渗透性的影响研究[D]. 西安:西北工业大学, 2016. FANG Liangchao. Effect of nesting on compaction and permeability properties of fabrics[D]. Xi'an:Northwestern Polytechnical University, 2016(in Chinese).
[8]  KOUBAA S, BURTIN C, LE C, et al. Investigation of capillary impregnation for permeability prediction of fibrous reinforcements[J]. Journal of Composite Materials, 2016, 50(11):1417-1429.
[9]  FANG L C, JIANG J J, WANG J B, et al. Effect of nesting on the out-of-plane permeability of unidirectional fabrics in resin transfer molding[J]. Applied Composite Materials, 2015, 22(3):231-249.
[10]  JIANG J J, SU Y, ZHOU L C, et al. Effect of nesting on the permeability of multilayer unidirectional fabrics[J]. Applied Composite Materials, 2017, 24(3):625-642.
[11]  AMERI E, LEBRUN G, LAPERRIERE L. In-plane permeability characterization of a unidirectional flax/paper reinforcement for liquid composite molding processes[J]. Composites Part A, 2016(85):52-64.
[12]  ENDRUWEIT A, LONG A C. A model for the in-plane permeability of triaxially braided reinforcements[J]. Composites Part A, 2011, 42(2):165-172.
[13]  蒋建军, 苏洋, 陈星, 等. 一种纤维织物面内渗透率的测量方法及测量系统:中国专利, ZL 201710132967.9[P]. 2017-06-20. JIANG Jianjun, SU Yang, CHEN Xing, et al. A measuring method and measuring system for the permeability of fiber fabric in surface:Chinese patent, ZL 201710132967.9[P]. 2017-06-20(in Chinese).
[14]  蒋建军, 苏洋, 周林超, 等. 一种纤维织物厚向稳态渗透率的测量方法及测量系统:中国专利, ZL 201610247134.2[P]. 2016-09-21. JIANG Jianjun, SU Yang, ZHOU Linchao, et al. A measurement method and measurement system for thickness stea-dy permeability of fiber fabric:Chinese patent, ZL 201610247134.2[P]. 2016-09-21(in Chinese).
[15]  ARBTER R, BERAUD J M, BINETRUY C, et al. Experimental determination of the permeability of textiles:A benchmark exercise[J]. Composites Part A, 2011, 42(9):1157-1168.
[16]  FRATTA D, KLUNKER F, TROCHU F, et al. Characterization of textile permeability as a function of fiber volume content with a single unidirectional injection experiment[J]. Composites Part A-Applied Science and Manufacturing, 2015(77):238-247.
[17]  金天国, 魏雅君, 杨波, 等. 预成型体渗透率预测及其受压缩变形的影响[J]. 复合材料学报, 2015, 32(3):840-847. JIN Tianguo, WEI Yajun, YANG Bo, et al. Permeability prediction of preform and influence of compression deformation[J]. Acta Materiae Compositae Sinica, 2015, 32(3):840-847(in Chinese).
[18]  刘刚, 李伟东, 益小苏, 等. "离位"增韧预成型体压缩特性[J]. 复合材料学报, 2015, 32(4):1194-1200. LIU Gang, LI Weidong, YI Xiaosu, et al. Compaction properties of "ex-situ" toughened preforms[J]. Acta Materiae Compositae Sinica, 2015, 32(4):1194-1200(in Chinese).
[19]  邢丽英, 蒋诗才, 周正刚. 先进树脂基复合材料制造技术进展[J]. 复合材料学报, 2013, 30(2):1-9. XING Liying, JIANG Shicai, ZHOU Zhenggang. Progress of manufacturing technology development of advanced polymer matrix composites[J]. Acta Materiae Compositae Sinica, 2013, 30(2):1-9(in Chinese).
[20]  TOHIDI S D, ROCHA A M, DENCHEVA N V, et al. Single polymer laminate composites by compression molding of knitted textiles and microparticles of polyamide 6:Preparation and structure-properties relationship[J]. Composites Part A, 2018(109):171-183.
[21]  蒋建军, 陈星, 邓国力, 等. 嵌套效应对单向织物压缩行为的影响[J]. 复合材料学报, 2017, 34(11):2463-2472. JIANG Jianjun, CHEN Xing, DENG Guoli, et al. Effect of nesting on the compaction behavior of unidirectional fabrics[J]. Acta Materiae Compositae Sinica, 2017, 34(11):2463-2472(in Chinese).
[22]  POTLURI P, SAGAR T V. Compaction modelling of textile preforms for composite structures[J]. Composite Structures, 2008, 86(1):177-185.
[23]  Huang T, Wang Y L, Wang G. Review of the mechanical properties of a 3D woven composite and its applications[J]. Polymer, 2018, 57(8):740-756.
[24]  WANG C C, BAI G H, WANG Y, et al. Permeability tests of fiber fabrics in the vacuum assisted resin transfer molding process[J]. Applied Composite Materials, 2015, 22(4):363-375.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133