|
- 2019
ZrB2-SiC/(C/C)复合涂层材料微观结构与静态氧化特性
|
Abstract:
采用涂刷法在C/C复合材料表面制备了ZrB2-SiC复合涂层,采用XRD和SEM分析了涂层的相组成和微观结构,并研究了ZrB2-SiC/(C/C)复合涂层材料在1 200℃和1 500℃的静态氧化性能。结果表明:ZrB2-SiC涂层结构致密,无明显的孔洞和裂纹;涂层有效改善了材料的抗氧化性能,经1 200℃静态氧化60 min后,ZrB2-SiC/(C/C)复合涂层材料失重率仅为2.4%,1 500℃时失重率增大至15%,小于无涂层保护的C/C复合材料(~35%)。ZrB2-SiC/(C/C)复合涂层材料氧化后,形成了含有ZrO2等高熔点颗粒的玻璃态SiO2氧化膜,能够有效抑制氧的扩散,从而提高了C/C复合材料抗氧化性能。 The ZrB2-SiC composite coatings were prepared on C/C composites by slurry painting. The phase composition and microstructure of the as-prepared ZrB2-SiC/(C/C) composites were analyzed by XRD spectroscopy and SEM, and the static oxidation behavior at 1 200℃ and 1 500℃ were also investigated. The results show that the ZrB2-SiC coatings are compact and uniform without obvious pores and cracks. After static oxidizing at 1 200℃ for 60 min, the mass loss rate of the as-prepared ZrB2-SiC/(C/C) composites is only about 2.4%. At 1 500℃, the mass loss rate increases to about 15%, but it is still lower than that of C/C composites without anti-oxidation coatings(~35%). In the static oxidation process, the significantly improved oxidation resistance of the as-prepared ZrB2-SiC/(C/C) composites is attributed to the generated glassy SiO2 film containing high melting point particles such as ZrO2. 装备预研联合基金(6141B06300103
[1] | BUCKLEY J D. Carbon-carbon materials and composites[M]. New Jersey:Noyes Publication, 1993. |
[2] | OPEKA M M, TALMY I G, ZAYKOSKI J A. Oxidation-based materials selection for 2000℃ hypersonic aerosurfaces:Theoretical considerations and historical experience[J]. Journal of Materials Science, 2004, 39(19):5887-5904. |
[3] | 付前刚, 张佳平, 李贺军. 抗烧蚀C/C复合材料研究进展[J]. 新型炭材料, 2015, 30(2):97-105. FU Q G, ZHANG J P, LI H J. Advances in the ablation resistance of C/C composites[J]. New Carbon Materials, 2015, 30(2):97-105(in Chinese). |
[4] | ZHANG G J, DENG Z Y, KONDO N, et al. Reactive hot pressing of ZrB2-SiC composites[J]. Journal of the American Ceramic Society, 2000, 83(9):2330-2332. |
[5] | WU W W, ZHANG G J, KAN Y M, et al. Reactive hot pressing of ZrB2-SiC-ZrC ultra high-temperature ceramics at 1800℃[J]. Journal of the American Ceramic Society, 2006, 89(9):2967-2969. |
[6] | WILLIAM G F. Thermodynamic analysis of ZrB2-SiC oxidation:Formation of a SiC-depleted region[J]. Journal of the American Ceramic Society, 2007, 90(1):143-148. |
[7] | HAN J C, HU P, ZHANG X H, et al. Oxidation-resistant ZrB2-SiC composites at 2200℃[J]. Composites Science and Technology, 2008, 68(3-4):799-806. |
[8] | ZOU X, FU Q G, LIU L, et al. ZrB2-SiC coationg to protect carbon/carbon composites against ablation[J]. Surface and Coating Technology, 2013, 226:17-21. |
[9] | HU C, PANG S, TANG S, et al. Ablation and mechanical behavior of a sandwich-structured composite with an inner layer of Cf/SiC between two outer layers of Cf/SiC-ZrB2-ZrC[J]. Corrosion Science, 2014, 80:154-163. |
[10] | FITZER E. The future of carbon-carbon composites[J]. Carbon, 1987, 25(22):163-190. |
[11] | 李仲平. 防热复合材料发展与展望[J]. 复合材料学报, 2011, 28(2):1-9. LI Z P. Major advancement and development trends of TPS composites[J]. Acta Materiae Compositae Sinica, 2011, 28(2):1-9(in Chinese). |
[12] | 杨飞宇, 张幸红, 韩杰才, 等. ZrB2-SiC和Cf/ZrB2-SiC超高温陶瓷基复合材料烧蚀机理的研究[J]. 无机材料学报, 2008, 23(4):734-738. YANG F Y, ZHANG X H, HAN J C, et al. Ablation mechanism of ZrB2-SiC and Cf/ZrB2-SiC ultra-high temperature ceramic composites[J]. Journal of Inorganic Materials, 2008, 23(4):734-738(in Chinese). |
[13] | 苏哲安, 杨鑫, 黄启忠, 等. SiC涂层对C/C复合材料高温氧乙炔焰烧蚀性能影响[J]. 中国有色金属学报, 2011, 21(11):2838-2845. SU Z A, YANG X, HUANG Q Z, et al. Effect of SiC coating on ablation resistance of C/C composites under oxyacetylene torch flame[J]. The Chinese Journal of Nonferrous Metals, 2011, 21(11):2838-2845(in Chinese). |
[14] | LI Z Q, LI H J, CAO C W, et al. Investigation on abaltion characteristics of C/C composites with ZrC/SiC coating[J]. Journal of Solid Rocket Technology, 2011, 16(2):231-236. |
[15] | YAN Y J, HUANG Z R, DONG S M, et al. Pressureless sintering of high-density ZrB2-SiC ceramic composites[J]. Journal of the American Ceramic Society, 2006, 89(11):3589-3592. |
[16] | ADAM L C, WILLIAM G F, GREGORY E H, et al. High-strength zirconium diboride-based ceramics[J]. Journal of the American Ceramic Society, 2004, 87(6):1170-1172. |
[17] | TRIPP W C, DAVIS H H, GRAHAM H C. Effect of a SiC addition on the oxidation of ZrB2[J]. American Ceramic Society Bulletin, 1973, 52(8):612-616. |
[18] | 张强, 崔红, 朱阳, 等. ZrB2-SiC复相陶瓷涂层制备及其保护C/C-SiC复合材料性能[J]. 复合材料学报, 2018, 35(3):640-646. ZHANG Q, CUI H, ZHU Y, et al. Preparation and properties of ZrB2-SiC compound ceramic coating for C/C-SiC composites[J]. Acta Materiae Compositae Sinica, 2018, 35(3):640-646(in Chinese). |
[19] | MARIO T, GIULIANO M, TEODORO V. Plasma spray deposition of ultra high temperature ceramics[J]. Surface and Coating Technology, 2006, 201(5):2103-2108. |
[20] | LEVINE S R, OPILA E J, HALBIG M C, et al. Evaluation of ultra-high temperature ceramics for aeropropulsion use[J]. Journal of the European Ceramic Society, 2002, 22(14-15):2757-2767. |