|
- 2019
高强高模聚酰亚胺纤维/环氧树脂复合材料力学性能与破坏机制
|
Abstract:
以高强高模聚酰亚胺(PI)纤维为增强体,以航空级环氧树脂(EP)为基体,通过热熔法制备预浸料并采用热压罐成型技术制备了PI/EP复合材料层合板,对其力学性能和破坏形貌进行了分析。结果表明:高强高模PI纤维与EP具有良好的界面结合力,PI/EP复合材料的层间剪切强度为65.2 MPa,面内剪切强度为68.6 MPa;良好的界面结合状态能充分发挥PI纤维优异的力学性能,PI/EP复合材料的纵向拉伸强度达1 835 MPa,弯曲强度为834 MPa;PI/EP复合材料纵向拉伸破坏模式为散丝爆炸破坏,同时由于高强高模PI纤维还具有优异的韧性和较高的断裂伸长率,PI/EP复合材料从受力到失效断裂的时间较长;PI/EP复合材料纵向压缩破坏模式为45°折曲带破坏。高强高模PI/EP复合材料为航空航天先进复合材料增加了一个全新的选材方案。 The polyimide fiber/epoxy (PI/EP) composite laminates were prepared by hot-melt method combined with autoclave molding technology using high strength and high modulus PI fiber as reinforcement and aviation grade EP as matrix. The mechanical properties and failure morphology of the PI/EP composites were analyzed. The results show that PI fiber exhibits good interfacial bonding strength with epoxy resin. The interlaminar shear strength of the PI/EP composites is 65.2 MPa and the in-plane shear strength is 68.6 MPa; The PI/EP composites possess excellent mechanical properties because of good interface bonding integration condition, the longitudinal tensile strength is up to 1 835 MPa and the flexural strength is 834 MPa. The longitudinal tensile failure form of the PI/EP composites is explosion damage of filament. The high strength and high modulus PI fiber has excellent toughness and high elongation, so the time of failure becomes longer when the PI/EP composites are subjected to great tensile stress. The longitudinal compression failure form is 45° kinking band. The high strength and high modulus PI/EP composites provides a new material selection scheme for advanced aerospace composites. 国家重点研发计划(2017YFB0308103);国家自然科学基金(51773007
[1] | 丁孟贤. 聚酰亚胺:化学、结构与性能的关系及材料[M]. 北京:科学出版社, 2012. DING M X. Polyimide:Relationship between chemistry, structure and properties and materials[M]. Beijing:Science Press, 2012(in Chinese). |
[2] | IRWIN R S, SWEENY W. Polyimide fibers[J]. Journal of Polymer Science Part C:Polymer Symposia, 2010, 19(1):41-48. |
[3] | 武德珍, 牛鸿庆, 齐胜利, 等. 一种高强高模聚酰亚胺纤维及其制备方法:中国, CN102345177A[P]. 2012-02-08. WU D Z, NIU H Q, QI S L, et al. A kind of high strength and high modulus polyimide fiber and its preparation method:China, CN102345177A[P]. 2012-02-08(in Chinese). |
[4] | American Society for Testing and Materials. Standard test method for compressive properties of polymer matrix composite materials using a combined loading compression (CLC) test fixture:ASTM D6641M-16e1[S]. West Conshohocken:ASTM International, 2016. |
[5] | American Society for Testing and Materials. Standard test methods for flexural properties of unreinforced and reinforced plastics and electrical insulating materials:ASTM D790-17[S]. West Conshohocken:ASTM International, 2017. |
[6] | American Society for Testing and Materials. Standard test method for short-beam strength of polymer matrix composite materials and their laminates:ASTM D2344M-16[S]. West Conshohocken:ASTM International, 2016. |
[7] | 陈蔚, 张晨乾, 成理, 等. RFI用5228A环氧树脂的制备及其对5228A/CCF300复合材料力学性能的影响[J]. 玻璃钢/复合材料, 2015(5):38-41. CHEN W, ZHANG C Q, CHENG L, et al. Preparation of 5228A epoxy resin for RFI and its effect on the mechanical properties of 5228A/CCF300 composites[J]. FRP/Composites, 2015(5):38-41(in Chinese). |
[8] | 钟翔屿, 包建文, 张代军, 等国产芳纶纤维增强环氧复合材料的压缩性能[J]. 固体火箭技术, 2017, 40(2):244-249. ZHONG X Y, BAO J W, ZHANG D J, et al. Compression properties of domestic aramid fiber reinforced epoxy composites[J]. Solid Rocket Technology, 2017, 40(2):244-249(in Chinese). |
[9] | 马腾, 贾智源, 关晓方, 等. 混杂比对单向碳-玻层间混编复合材料0°压缩和弯曲性能的影响[J]. 复合材料学报, 2017, 34(4):530-537. MA T, JIA Z Y, GUAN X F, et al. Effects of hybrid ratio on the axial compressed and flexural properties of unidirectional interlayer carbon-glass hybrid composites[J]. Acta Materiae Compositae Sinica, 2017, 34(4):530-537(in Chinese). |
[10] | ROSEN B W. Tensile failure of fibrous composites[J]. AIAA Journal, 2013, 2(11):1985-1991. |
[11] | 曾帅, 贾智源, 侯博, 等. 碳纤维-玻璃纤维层内混杂单向增强环氧树脂复合材料拉伸性能[J]. 复合材料学报, 2016, 33(2):297-303. ZENG S, JIA Z Y, HOU B, et al. Tensile properties of unidirectional carbon fiber-glass fiber hybrid reinforced epoxy composites in layer[J]. Acta Materiae Compositae Sinica, 2016, 33(2):297-303(in Chinese). |
[12] | SMITH R L. A probability model for fibrous composites with local load sharing[J]. Proceedings of the Royal Society of London, 1980, 372(1751):539-553. |
[13] | MISHRA A, NAIK N K. Inverse micromechanical models for compressive strength of unidirectional composites[J]. Journal of Composite Materials, 2009, 43(10):1199-1211. |
[14] | OPELT C V, C?NDIDO G M, REZENDE M C. Compressive failure of fiber reinforced polymer composites:A fractographic study of the compression failure modes[J]. Materials Today Communications, 2018, 15:218-227. |
[15] | JUMAHAT A, SOUTIS C, JONES F R, et al. Fracture mechanisms and failure analysis of carbon fibre/toughened epoxy composites subjected to compressive loading[J]. Composite Structures, 2010, 92(2):295-305. |
[16] | 董南希, 田国峰, 齐胜利, 等. 表面改性离子交换化学镀制备表面覆镍聚酰亚胺纤维[J]. 复合材料学报, 2018, 35(11):3154-3161. DONG N X, TIAN G F, QI S L, et al. Fabrication of surface-nickeled polyimide fiber via surface-modification ion-exchange and electroless plating technique[J]. Acta Materiae Compositae Sinica, 2018, 35(11):3154-3161(in Chinese). |
[17] | BHAT G S, SCHWANKE R. Thermal properties of a polyimide fiber[J]. Journal of Thermal Analysis, 1997, 49(1):399-405. |
[18] | ARTEM-EVA V N, KUDRYAVTSEV V V, NEKRASOVA E M, et al. Investigation of the role of the pyrimidine ring in the main chain of polyamido acids and polyimides 1:Supermolecular structure of polypyromellitimides based on 2, 5-bis(paminophenyl)pyrimidine and its carbocyclic analog 4, 4'-diaminoterphenyl[J]. Bulletin of the Russian Academy of Sciences, Division of Chemical Science, 1992, 41(10):1790-1796. |
[19] | 张梦颖, 牛鸿庆, 韩恩林, 等. 高强高模聚酰亚胺纤维及其应用研究[J]. 绝缘材料, 2016, 49(8):12-16. ZHANG M Y, NIU H Q, HAN E L, et al. High strength and high modulus polyimide fiber and its application research[J]. Insulating Materials, 2016, 49(8):12-16(in Chinese). |
[20] | American Society for Testing and Materials. Standard test method for tensile properties of polymer matrix composite materials:ASTM D3039M-17[S]. West Conshohocken:ASTM International, 2017. |
[21] | American Society for Testing and Materials. Standard test method for in-plane shear response of polymer matrix composite materials by tensile test of a ±45° laminate:ASTM D3518-18[S]. West Conshohocken:ASTM International, 2018. |
[22] | 张承双, 崔霞, 李翠云, 等. PBO/T700层间混杂复合材料弯曲及压缩性能研究[J]. 玻璃钢/复合材料, 2015(11):34-37. ZHANG C S, CUI X, LI C Y, et al. Flexural and compressive properties of PBO/T700 interlaminar hybrid composites[J]. FRP/Composites, 2015(11):34-37(in Chinese). |
[23] | 刘巍, 张天骄, 包建文, 等. 树脂交联结构特征对复合材料纵向压缩性能的影响[J]. 航空材料学报, 2016, 36(1):75-80. LIU W, ZHANG T J, BAO J W, et al. Effect of structural characteristics of resin crosslinking on longitudinal compressive properties of composites[J]. Acta Materiae Compositae Sinica, 2016, 36(1):75-80(in Chinese). |
[24] | ZWEBEN C. A bounding approach to the strength of composite materials[J]. Engineering Fracture Mechanics, 1972, 4(1):1-8. |
[25] | MATSUO T, KAGEYAMA K. Compressive failure mechanism and strength of unidirectional thermoplastic composites based on modified kink band model[J]. Composites Part A:Applied Science and Manufacturing, 2017, 93:117-125. |
[26] | ROBINSON P, GREENHALGH E, PINHO S. Failure mechanisms in polymer matrix composites[M]//PINHO S T, GUTKIN R, PIMENTA S, et al. 7-fibre-dominated compressive failure in polymer matrix composites. London:Woodhead Publishing, 2012:183-223. |
[27] | OPELT C V, C?NDIDO G M, REZENDE M C. Fractographic study of damage mechanisms in fiber reinforced polymer composites submitted to uniaxial compression[J]. Engineering Failure Analysis, 2018, 92:520-527. |