|
- 2019
基于Puck理论的复合材料层合板横向剪切失效分析
|
Abstract:
[1] | SIMULIA D S. ABAQUS user manual[M]. Version6.10, Providence:ABAQUS Inc., 2010. |
[2] | ZHOU Y X, HUANG Z M. A bridging model prediction of the ultimate strength of composite laminates subjected to triaxial loads[J]. Journal of Composite Materials, 2012, 46(19-20):2343-2378. |
[3] | RAIMONDO L, IANNUCCI L, ROBINSON P, et al. A progressive failure model for mesh-size-independent FE analysis of composite laminates subject to low-velocity impact damage[J]. Composites Science and Technology, 2012, 72(5):624-632. |
[4] | PINHO S T, DARVIZEH R, ROBINSON P, et al. Material and structural response of polymer-matrix fibre-reinforced composites[J]. Journal of Composite Materials, 2012, 46(19-20):2313-2341. |
[5] | HVHNE C, ZERBST A K, KUHLMANN G, et al. Progressive damage analysis of composite bolted joints with liquid shim layers using constant and continuous degradation models[J]. Composite Structures, 2010, 92(2):189-200. |
[6] | DEUSCHLE H M, PUCK A. Application of the Puck failure theory for fibre-reinforced composites under three-dimensional stress:Comparison with experimental results[J]. Journal of Composite Materials, 2013, 47(6-7):827-846. |
[7] | BOGETTI T A, STANISZEWSKI J, BURNS B P, et al. Predicting the nonlinear response and progressive failure of composite laminates under tri-axial loading[J]. Journal of Composite Materials, 2012, 46(9):2443-2459. |
[8] | PUCK A, SCHVRMANN H. Failure analysis of FRP laminates by means of physically based phenomenological models[J]. Composites Science and Technology, 1998, 58(7):1045-1067. |
[9] | GADADE A M, LAL A, SINGH B N. Finite element implementation of Puck's failure criterion for failure analysis of laminated plate subjected to biaxial loadings[J]. Aerospace Science & Technology, 2016, 55:227-241. |
[10] | WIEGAND J, PETRINIC N, ELLIOTT B. An algorithm for determination of the fracture angle for the three-dimensional Puck matrix failure criterion for UD composites[J]. Compo-sites Science & Technology, 2008, 68(12):2511-2517. |
[11] | WAGIH A, MAIMí P, GONZáLEZ E V, et al. Damage sequence in thin-ply composite laminates under out-of-plane loading[J]. Composites Part A:Applied Science and Manufacturing, 2016, 87:66-77. |
[12] | TAHERI-BEHROOZ F, ESMKHANI M, YAGHOOBI-CHATROODI A, et al. Out-of-plane shear properties of glass/epoxy composites enhanced with carbon-nanofibers[J]. Polymer Testing, 2016, 55:278-286. |
[13] | ASTM. Standard test method for shear properties of compo-site materials by the V-notched beam method:ASTM D5379/D5379M-12[S]. West Conshohocken:ASTM International, 2012. |
[14] | CARRERE N, LAURIN F, MAIRE J F. Micromechanical-based hybrid mesoscopic 3D approach for non-linear progressive failure analysis of composite structures[J]. Journal of Composite Materials, 2012, 46(19-20):2389-2415. |
[15] | NELSON E E, HANSEN A C, MAYES J S. Failure analysis of composite laminates subjected to hydrostatic stresses:A multicontinuum approach[J]. Journal of Composite Materials, 2012, 46(19-20):2461-2483. |
[16] | HASHIN Z. Failure criteria for unidirectional fiber compo-sites[J]. Journal of Applied Mechanics, 1980, 47(2):329-334. |
[17] | PINHO S T, IANNUCCI L, ROBINSON P. Physically based failure models and criteria for laminated fibre-reinforced composites with emphasis on fibre kinking. Part II:FE implementation[J]. Composites Part A:Applied Science and Manufacturing, 2006, 37(5):766-777. |
[18] | KODAGALI K, TESSEMA A, KIDANE A. Progressive failure analysis of a composite lamina using Puck failure criteria[C]. American Society for Composites, 2017. |
[19] | LIU P F, LIAO B B, JIA L Y, et al. Finite element analysis of dynamic progressive failure of carbon fiber composite laminates under low velocity impact[J]. Composite Structures, 2016, 149:408-422. |
[20] | JIA L, YU L, ZHANG K, et al. Combined modelling and experimental studies of failure in thick laminates under out-of-plane shear[J]. Composites Part B:Engineering, 2016, 105:8-22. |
[21] | SCHIRMAIER F J, WEILAND J, K?RGER L, et al. A new efficient and reliable algorithm to determine the fracture angle for Puck's 3D matrix failure criterion for UD compo-sites[J]. Composites Science and Technology, 2014, 100(3):19-25. |