|
- 2019
Fe3O4@锂铝硅微晶玻璃/还原氧化石墨烯复合材料的制备和吸波性能
|
Abstract:
[1] | HU C, MOU Z, LU G, et al. 3D graphene-Fe3O4 nanocomposites with high-performance microwave absorption[J]. Physical Chemistry Chemical Physics, 2013, 15(31):13038-13043. |
[2] | ZHANG Y, WANG X, CAO M. Confinedly implanted NiFe2O4-rGO:Cluster tailoring and highly tunable electromagnetic properties for selective-frequency microwave absorption[J]. Nano Research, 2018, 11(3):1426-1436. |
[3] | WANG X X, MA T, SHU J C, et al. Confinedly tailoring Fe3O4 clusters-NG to tune electromagnetic parameters and microwave absorption with broadened bandwidth[J]. Chemical Engineering Journal, 2018, 332:321-30. |
[4] | SUN D, ZOU Q, WANG Y, et al. Controllable synthesis of porous Fe3O4@ZnO sphere decorated graphene for extraordinary electromagnetic wave absorption[J]. Nanoscale, 2014, 6(12):6557-6562. |
[5] | WU Z, TAN D, TIAN K, et al. Facile preparation of core-shell Fe3O4@polypyrrole composites with superior electromagnetic wave absorption properties[J]. The Journal of Physical Chemistry C, 2017, 121(29):15784-92. |
[6] | YANG R B, REDDY P M, CHANG C J, et al. Synthesis and characterization of Fe3O4/polypyrrole/carbon nanotube composites with tunable microwave absorption properties:Role of carbon nanotube and polypyrrole content[J]. Chemical Engineering Journal, 2016, 285:497-507. |
[7] | LI M, CAO X, ZHENG S, et al. Ternary composites RGO/MoS2@Fe3O4:Synthesis and enhanced electromagnetic wave absorbing performance[J]. Journal of Materials Science:Materials in Electronics, 2017, 28(22):16802-16812. |
[8] | DU Y, LIU W, QIANG R, et al. Shell thickness-dependent microwave absorption of core-shell Fe3O4@C composites[J]. ACS Applied Materials & Interfaces, 2014, 6(15):12997-13006. |
[9] | WANG L, HUANG Y, LI C, et al. Hierarchical composites of polyaniline nanorod arrays covalently-grafted on the surfaces of graphene@Fe3O4@C with high microwave absorption performance[J]. Composites Science and Technology, 2015, 108:1-8. |
[10] | JIA X, WANG J, ZHU X, et al. Synthesis of lightweight and flexible composite aerogel of mesoporous iron oxide threaded by carbon nanotubes for microwave absorption[J]. Journal of Alloys and Compounds, 2017, 697:138-146. |
[11] | REN Y L, WU H Y, LU M M, et al. Quaternary nanocomposites consisting of graphene, Fe3O4@Fe core@shell, and ZnO nanoparticles:Synthesis and excellent electromagnetic absorption properties[J]. ACS Applied Materials & Interfaces, 2012, 4(12):6436-6442. |
[12] | LIU Q, CAO Q, BI H, et al. CoNi@SiO2@TiO2 and CoNi@Air@TiO2 microspheres with strong wideband microwave absorption[J]. Advanced Materials, 2016, 28(3):486-490. |
[13] | FENG T, XIE D, ZHAO H, et al. Tunable transport characteristics of p-type graphene field-effect transistors by poly(ethylene imine) overlayer[J]. Carbon, 2014, 77:424-430. |
[14] | FENG J, HOU Y, WANG Y, et al. Synthesis of Hierarchical ZnFe2O4@SiO2@RGO core-shell microspheres for enhanced electromagnetic wave absorption[J]. ACS Applied Materials and Interfaces, 2017, 9(16):14103-14111. |
[15] | PAN Y F, WANG G S, YUE Y H. Fabrication of Fe3O4@SiO2@RGO nanocomposites and their excellent absorption properties with low filler content[J]. RSC Advances, 2015, 5(88):71718-71723. |
[16] | LIN C C, HO J M, HSIEH H L. Feasibility of using a rotating packed bed in preparing Fe3O4 nanoparticles[J]. Chemical Engineering Journal, 2012, 203:88-94. |
[17] | 李琳, 姚正军, 周金堂. 聚苯胺纳米纤维/锂锌铁氧体复合吸波材料的制备与性能[J]. 复合材料学报, 2016, 33(4):814-820.LI L, YAO Z J, ZHOU J T. Preparation and property of polyaniline nanofibers/lithium zinc ferrite composite absorbents[J]. Acta Materiae Compositae Sinica, 2016, 33(4):814-820(in Chinese). |
[18] | XIA L, WANG X, WEN G, et al. Nearly zero thermal expansion of β-spodumene glass ceramics prepared by sol-gel and hot pressing method[J]. Ceramics International, 2012, 38(6):5315-5318. |
[19] | KONG L, YIN X, ZHANG Y, et al. Electromagnetic wave absorption properties of reduced graphene oxide modified by maghemite colloidal nanoparticle clusters[J]. The Journal of Physical Chemistry C, 2013, 117(38):19701-19711. |
[20] | LI X, YANG S, SUN J, et al. Enhanced electromagnetic wave absorption performances of Co3O4 nanocube/reduced graphene oxide composite[J]. Synthetic Metals, 2014, 194:52-58. |
[21] | LIANG C, WANG Z. Controllable fabricating dielectric-dielectric SiC@C core-shell nanowires for high-performance electromagnetic wave attenuation[J]. ACS Applied Materials and Interfaces, 2017, 9(46):40690-40696. |
[22] | QIAO M, LEI X, MA Y, et al. Dependency of tunable microwave absorption performance on morphology-controlled hierarchical shells for core-shell Fe3O4@MnO2 composite microspheres[J]. Chemical Engineering Journal, 2016, 304:552-562. |
[23] | WANG H, XIANG L, WEI W, et al. Efficient and lightweight electromagnetic wave absorber derived from metal organic framework-encapsulated cobalt nanoparticles[J]. ACS Applied Materials and Interfaces, 2017, 9(48):42102-42110. |
[24] | WANG L, GUAN Y, QIU X, et al. Efficient ferrite/Co/porous carbon microwave absorbing material based on ferrite@metal-organic framework[J]. Chemical Engineering Journal, 2017, 326:945-955. |
[25] | 陈文博, 肖鹏, 周伟, 等. 纳米SiC纤维改性短切碳纤维增强Si3N4陶瓷介电响应及吸波性能[J]. 复合材料学报, 2017, 34(11):2530-2536.CHEN W B, XIAO P, ZHOU W, et al. Dielectric response and microwave absorbing properties for nano SiC fiber modified chopped carbon fiber reinforced Si3N4 composites[J]. Acta Materiae Compositae Sinica, 2017, 34(11):2530-2536(in Chinese). |
[26] | CAO M S, YANG J, SONG W L, et al. Ferroferric oxide/multiwalled carbon nanotube vs polyaniline/ferroferric oxide/multiwalled carbon nanotube multiheterostructures for highly effective microwave absorption[J]. ACS Applied Materials and Interfaces, 2012, 4(12):6949-6956. |
[27] | WANG Y, PENG Z, JIANG W. Controlled synthesis of Fe3O4@SnO2/RGO nanocomposite for microwave absorption enhancement[J]. Ceramics International, 2016, 42(9):10682-10689. |
[28] | QU B, ZHU C, LI C, et al. Coupling hollow Fe3O4-Fe nanoparticles with graphene sheets for high-performance electromagnetic wave absorbing material[J]. ACS Applied Materials and Interfaces, 2016, 8(6):3730-3735. |
[29] | LI Y, CHEN G, LI Q, et al. Facile synthesis, magnetic and microwave absorption properties of Fe3O4/polypyrrole core/shell nanocomposite[J]. Journal of Alloys and Compounds, 2011, 509(10):4104-4107. |
[30] | QIAO M, LEI X, MA Y, et al. Facile synthesis and enhanced electromagnetic microwave absorption performance for porous core-shell Fe3O4@MnO2 composite microspheres with lightweight feature[J]. Journal of Alloys and Compounds, 2017, 693:432-439. |
[31] | TIAN C, DU Y, CUI C, et al. Synthesis and microwave absorption enhancement of yolk-shell Fe3O4@C microspheres[J]. Journal of Materials Science, 2017, 52(11):6349-6361. |
[32] | SONG Q, YE F, YIN X, et al. Carbon nanotube-multilayered graphene edge plane core-shell hybrid foams for ultrahigh-performance electromagnetic-interference shielding[J]. Advanced Materials, 2017, 29(31):1701583. |
[33] | WANG T, LIU Z, LU M, et al. Graphene-Fe3O4 nanohybrids:Synthesis and excellent electromagnetic absorption properties[J]. Journal of Applied Physics, 2013, 113(2):024314. |
[34] | LIU P B, HUANG Y, SUN X. Excellent electromagnetic absorption properties of poly(3, 4-ethylenedioxythiophene)-reduced graphene oxide-Co3O4 composites prepared by a hydrothermal method[J]. ACS Applied Materials & Interfaces, 2013, 5(23):12355-12360. |
[35] | GAO Y, ZHONG D, ZHANG D, et al. Thermal regeneration of recyclable reduced graphene oxide/Fe3O4 composites with improved adsorption properties[J]. Journal of Chemical Technology & Biotechnology, 2014, 89(12):1859-1865. |
[36] | LIU X, YU Z, ISHIKAWA R, et al. Single-source-precursor derived RGO/CNTs-SiCN ceramic nanocomposite with ultra-high electromagnetic shielding effectiveness[J]. Acta Materialia, 2017, 130:83-93. |
[37] | CHEN Y J, GAO P, ZHU C L, et al. Synthesis, magnetic and electromagnetic wave absorption properties of porous Fe3O4/Fe/SiO2 core/shell nanorods[J]. Journal of Applied Physics, 2009, 106(5):054303. |
[38] | QING Z, LI B, LI H, et al. Effects of MgO on properties of Li2O-Al2O3-SiO2 glass-ceramics for LTCC applications[J]. Journal of Materials Science:Materials in Electronics, 2014, 25:2149-2154. |
[39] | XIA L, YANG Y, ZHANG X, et al. Crystal structure and wave-transparent properties of lithium aluminum silicate glass-ceramics[J]. Ceramics International, 2018, 44(12):14896-14900. |
[40] | WANG F, LIU J, KONG J, et al. Template free synthesis and electromagnetic wave absorption properties of monodispersed hollow magnetite nano-spheres[J]. Journal of Materials Chemistry, 2011, 21(12):4314-4320. |
[41] | WU G, CHENG Y, XIE Q, et al. Facile synthesis of urchin-like ZnO hollow spheres with enhanced electromagnetic wave absorption properties[J]. Materials Letters, 2015, 144:157-160. |
[42] | WANG G, GAO Z, WAN G, et al. High densities of magnetic nanoparticles supported on graphene fabricated by atomic layer deposition and their use as efficient synergistic microwave absorbers[J]. Nano Research, 2014, 7(5):704-716. |
[43] | 孙星, 盛雷梅, 方旸皓, 等. 单壁碳纳米管-CoFe2O4双层复合材料的微波吸收特性[J]. 复合材料学报, 2018, 35(5):1279-1287.SUN X, SHENG L M, FANG Y H, et al. Microwave absorption properties of single-walled carbon nanotubes-CoFe2O4 double-layer composites[J]. Acta Materiae Compositae Sinica, 2018, 35(5):1279-1287(in Chinese). |