全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2019 

磁致伸缩层合悬臂梁式作动器的振动分析
Vibration analysis of magnetostrictive laminated cantilever actuator

DOI: 10.13801/j.cnki.fhclxb.20180827.003

Keywords: 作动器,磁致伸缩,层合梁振动,解析解,倍频效应
actuator
,magnetostrictive,laminated vibration,analytic solution,frequency multiplying effect

Full-Text   Cite this paper   Add to My Lib

Abstract:

为了分析磁致伸缩薄膜型层合悬臂梁式作动器的振动问题,应用磁致伸缩材料的非线性本构关系,由哈密尔顿原理导出了双层悬臂梁的振动微分方程。采用分离变量方法和常微分方程组的解析解法对磁致伸缩薄膜型层合悬臂梁的自由振动和受迫振动进行了理论分析。数值算例表明本文计算结果与有限元结果吻合较好,从而佐证了本文理论模型和求解方法的正确性,并讨论了几何参数、材料参数对层合梁固有频率的影响。还分析了在周期输入磁场激励下悬臂梁的挠度响应,且挠度响应呈现出倍频效应的动态特性。 Differential equation to analyze the vibration problem of a magnetostrictive laminated cantilever with thin-film actuator was derived by Hamilton's variational principle, using the nonlinear constitutive relation of magnetostrictive material. The free vibration and forced vibration of magnetostrictive laminated cantilever with thin-film were analyzed by means of the methods of separation variables and the analytic solution of ordinary differential equations. The numerical example shows that the calculation results of this paper are in good agreement with finite element results, which evidences validity of the theoretical model and solution method, and the effect of the geometric parameters and material parameters on natural frequency of the laminated beam was discussed. The deflection response of beam excited by a periodic input magnetic field was also analyzed, which present the dynamic characteristic of frequency multiplying effect. The deflection response of the cantilever beam excited by a periodic input magnetic field was also analyzed, which presented the double frequency effect of dynamic characteristics

References

[1]  BUSCH-VISHNIAC H J. Electromechanical sensors and actuators[M]. New York:Springer-Verlag, 1999.
[2]  LI S Q, FU L L, BARBATEE J M. Resonance behavior of magnetostrictive micro/milli-cantilever and its application as a biosensor[J]. Sensors and Actuators B:Chemical, 2009, 137(2):692-699.
[3]  KLOKHOLM E, JAHNES C V. Comments on "Magnetoctrictive and internal stresses in thin films:The cantilever method revisited"[J]. Journal of Magnetism and Magnetic Materials, 1996, 152(1-2):226-230.
[4]  GUERRERO V H, WETHERHOLD R C. Strain and stress calculation in bulk magnetostrictive materials and thin films[J]. Journal of Magnetism and Magnetic Materials, 2004, 271(2):190-206.
[5]  REDDY J N, BARBOSA J I. On vibration suppression of magnetostrictive beams[J]. Smart Materials and Structures, 2000, 9(1):49-58
[6]  SI H M, CHO C. Finite element modeling of magnetostrictive for multilayered MEMS devices[J]. Journal of Magnetism and Magnetic Materials, 2004, 270(1):167-173.
[7]  钟轶峰, 李潇, 梅宝平, 等. 磁致伸缩复合材料有效性能的变分渐近细观力学模型[J]. 复合材料学报, 2017, 34(3):574-581. ZHONG Y F, LI X, MEI B P, et al. A variational asymptotic micromechanics model for effective properties of magnetostrictive composites[J]. Acta Materiae Compositae Sinica, 2017, 34(3):574-581(in Chinese).
[8]  WAN Y P, FANG D N, HWANG K C. Non-linear constitutive relations for magnetostrictive materials[J]. International Journal of Non-Linear Mechanics, 2003, 38(7):1053-1065.
[9]  PONS J L. Emerging actuator technologies[M]. New York:Wiley-Interscience, 2005.
[10]  AJANAPPA M, BI J. A theoretical and experimentalstudy of magnetostrictive mini-actuators[J]. Smart Materials and Structures, 1994, 3(2):83-91.
[11]  王博文, 曹淑瑛, 黄文美. 磁致伸缩材料与器件[M]. 北京:冶金工业出版社, 2008. WANG B W, CAO S Y, HUANG W M. Magnetostrictive materials and devices[M]. Beijing:Metallurgical Industry Press, 2008(in Chinese).
[12]  MOON S J, LIM C W, KIM B H, et al. Structuralvibration control using linear magnetostrictive actuators[J]. Sound Vibration, 2007, 302(4):875-891.
[13]  SHANG X C, PAN E N, QIN L P. Mathematical modeling andnumerical computation for the vibration of a magnetostrictive actuator[J]. Smart Materials andStructures, 2008, 17(4):1-12.
[14]  HONDA T, ARAI K I, YAMAGUCHI M. Fabrication of magnetostrictive actuators using rare-earth (Tb, Sm)-Fe thin films (invited)[J]. Journal of Applied Physics, 1994, 76(10):6994-6999.
[15]  QUANDT E, SEEMANN K. Fabrication and simulation of magnetostrictive thin-film actuators[J]. Sensors and Actuators A:Physical, 1995, 50(1-2):105-109.
[16]  JIA Z Y, LIU W, ZHANG Y S, et al. A nonlinear magnetomechanical coupling model of giant magnetostrictive thin films at low magnetic fields[J]. Sensors and Actuators A:Physical, 2006, 128(1):158-164.
[17]  梁伟, 刘冬欢. 磁致伸缩铺层阻尼板壳结构的振动分析[J]. 复合材料学报, 2006, 23(6):186-191. LIANG W, LIU D H. Vibration analysis of laminated shells with magnetostrictive and viscoelastic layers[J]. Acta Materiae Compositae Sinica, 2006, 23(6):186-191(in Chinese).
[18]  XU Y, SHANG X C. Vibration analysis of magnetostrictive thin-film composite cantilever actuator[J]. Smart Materials and Structures, 2016, 25(9):1-12.
[19]  WATTS R, GIBBS M R J, KARL W J. Finite-element modeling of magnetostrictive bending of a coated cantilever[J]. Applied Physics Letters, 1997, 70(19):2607-2609.
[20]  DEAN J, GIBBS M R J, SCHREFL T. Finite-element analysis on cantilever beams coated with magnetostrictive material[J]. IEEE Transactions on Magnetics, 200642(2):283-288.
[21]  胡渊, 龚国斌, 曹东升, 等. 压电/磁致伸缩/环氧树脂层合复合材料的磁电效应及其频响特性[J]. 复合材料学报, 2007, 24(4):29-33. HU Y, GONG G B, CAO D S, et al. Magnetoelectric effect and its frequency response for PZT/Terfenol-D/epoxy laminate composites[J]. Acta Materiae Compositae Sinica, 2007, 24(4):29-33(in Chinese).
[22]  曹鸿霞, 李敏, 张闯, 等. 压电-磁致伸缩双层磁电复合材料的机电谐振[J]. 复合材料学报, 2013, 30(5):244-250. CAO H X, LI M, ZHANG C, et al. Electromechanical resonance of piezoelectric-magnetostrictive bilayer[J]. Acta Materiae Compositae Sinica, 2013, 30(5):244-250(in Chinese).
[23]  CARMAN G P, MITROVIC M. Nonlinear constitutive relations for magnetostrictive materials with application to 1D problems[J]. Intelligent Material Systems and Structures, 1995, 6(5):673-683.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133