全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2019 

不同冷却润滑方式对切削SiCP/Al复合材料刀具磨损的影响
Influence of different cooling and lubrication methodson tool wear in machining SiCP/Al composites

DOI: 10.13801/j.cnki.fhclxb.20180724.001

Keywords: SiCP/Al复合材料,切削液,冷却润滑,刀具磨损,边界磨损,刀具破损
SiCP/Al composites
,cutting fluid,cooling and lubrication,tool wear,boundary wear,tool breakage

Full-Text   Cite this paper   Add to My Lib

Abstract:

为探究不同冷却润滑方式对切削SiCP/Al复合材料刀具磨损的影响,进行了干切削(Dry)、微量润滑(MQL)、液氮(LN2)、切削油(Oil)和乳化液(Emulsion)共五种冷却润滑条件下的车削实验,分析了冷却润滑方式对刀具边界磨损、刀具破损和后刀面磨损的影响。结果表明:MQL和LN2有更佳的流体冲刷效果,可以将脱落的SiC颗粒及时带离切削区,减少边界磨损; Oil和Emulsion冲刷效果较差,会加剧边界磨损。LN2的使用会增加刀具受到的热应力和机械冲击,积屑瘤发生完全脱落,造成切削过程不平稳,当切削距离达到1 100 m时,刀具发生破损; Oil切削时,严重的边界磨损导致刀尖部位尺寸减小,强度降低,当切削距离达到825 m时发生了刀具破损。MQL良好的润滑渗透性和LN2有效的冷却效果可以减少后刀面磨损。因此,MQL兼具冷却、润滑和流体冲刷效果,更加适合作为切削SiCP/Al复合材料的冷却润滑方式。 In order to study the influence of different cooling and lubrication methods on tool wear in machining SiCP/Al composites, the turning experiments with cooling and lubrication methods including dry, liquid nitrogen (LN2), minimum quantity lubrication (MQL), cutting oil (Oil) and emulsion were carried out, the influences of cooling and lubrication methods on tool boundary wear, tool breakage and flank wear were analyzed. The results show that MQL and LN2 can bring the detached SiC particles away from the cutting zone due to their more effective flushing characteristic, which contributes to the decrease of boundary wear; the application of Oil and Emulsion deteriorates boundary wear intensely because of less flushing ability. The increase in the thermal stress and mechanical shocking applied to the tool and build-up edge shedding will cause the cutting process to be unstable with the application of LN2, resulting in tool breakage at the cutting distance of 1 100 m; when turning with Oil, serious boundary wear can decrease the tool nose size and lead to reducing of intensity of the tool nose, so tool breakage occurs at the cutting distance of 825 m. Flank wear decreases due to MQL's great lubrication permeability and LN2' effective cooling effect. Therefore, MQL possesses good cooling, lubrication and fluid flushing effects and is a better cooling and lubrication method for machining SiCP/Al composites. 国家自然科学基金(51775083

References

[1]  DAS D K, MISHRA P C, SINGH S, et al. Fabri cation and heat treatment of ceramic-reinforced aluminium matrix composites:A review[J]. International Journal of Mechanical & Materials Engineering, 2014, 9(1):1-15.
[2]  舒尔茨, 阿贝勒. 高速加工理论与应用[M]. 北京:科学出版社, 2010. SCHULZ H, ABELE E. The high speed machining:Fundamentals and applications[M]. Beijing:Science Press, 2010(in Chinese).
[3]  DING X, LIEW W Y H, LIU X D. Evaluation of machining performance of MMC with PCBN and PCD tools[J]. Wear, 2005, 259(7-12):1225-1234.
[4]  KANNAN S, KISHAWY H A. Tribological aspects of machining aluminium metal matrix composites[J]. Journal of Materials Processing Technology, 2008, 198(1):399-406.
[5]  SADIK M I, GRENMYR G. Application of different cooling strategies in drilling of metal matrix composite (MMC)[J]. Materials Science Forum, 2016, 836-837:3-12.
[6]  王阳俊. SiCp/Al复合材料高速铣削表面质量及刀具磨损研究[D]. 哈尔滨:哈尔滨工业大学, 2011. WANG Y J. Research on surface quality and tool wear in high-speed milling of SiCP/Al composites[D]. Harbin:Harbin Institute of Technology, 2011(in Chinese).
[7]  吉国强. SiCP/Al复合材料的切削加工性能研究[J]. 广东化工, 2015, 42(9):1-3. JI G Q. Research on machinability of SiCP/Al composites[J]. Guangdong Chemical Industry, 2015, 42(9):1-3(in Chinese).
[8]  NJUGUNA M J, GAO D. Experimental study on performance of CBN-coated, CBN-uncoated and PCD tools in turning Al 2124 SiC (45wt%) PMMC[J]. Key Engineering Materials, 2013, 567:27-31.
[9]  LI X, SEAH W K H. Tool wear acceleration in relation to workpiece reinforcement percentage in cutting of metal matrix composites[J]. Wear, 2001, 247(2):161-171.
[10]  BARNES S, PASHBY I R. Through-tool coolant drilling of aluminum/SiC metal matrix composite[J]. Journal of Engineering Materials & Technology, 2000, 122(4):384-388.
[11]  GOPALAKANNAN S, SENTHILVELAN T. Application of response surface method on machining of Al-SiC nano-composites[J]. Measurement, 2013, 46(8):2705-2715.
[12]  QUAN Y, ZHOU Z. Tool wear and its mechanism for cutting SiC particle-reinforced aluminium matrix composites[J]. Journal of Materials Processing Technology, 2000, 100(1):194-199.
[13]  葛英飞, 徐九华, 傅玉灿. 高速铣削SiCP/Al复合材料时聚晶金刚石刀具的磨损机理[J]. 光学精密工程, 2011, 19(12):2907-2918. GE Y F, XU J H, FU Y C. Wear mechanisms of PCD tool in high-speed milling of SiCP/Al composites[J]. Opitics and Precision Engineering, 2011, 19(12):2907-2918(in Chinese).
[14]  王涛. 高体积分数SiCP/Al复合材料高速铣削基础研究[D]. 北京:北京理工大学, 2015. WANG T. Fundamental study on high speed milling of high volume fraction SiCP/Al composite[D]. Beijing:Beijing Institute of Technology, 2015(in Chinese).
[15]  SANKAR M R, RAMKUMAR J, ARAVINDAN S. Machining of metal matrix composites with minimum quantity cutting fluid and flood cooling[J]. Advanced Materials Research, 2011, 299-300:1052-1055.
[16]  KLOCKE F, KRIEG T. Coated tools for metal cutting-features and applications[J]. CIRP Annals-Manufacturing Technology, 1999, 48(2):515-525.
[17]  王大镇, 冯培锋, 李波, 等. 切削SiC增强铝基复合材料时刀具的磨损形态及机理[J]. 高技术通讯, 2010, 20(11):1184-1189. WANG D Z, FENG P F, LI B, et al. Tool wear appearance and mechanism when cutting SiC reinforced aluminum matrix composites[J]. High Technology Letters, 2010, 20(11):1184-1189(in Chinese).
[18]  HAKAMI F, PRAMANIK A, BASAK A K. Tool wear and surface quality of metal matrix composites due to machining:A review[J]. Proceedings of the Institution of Mechanical Engineers B:Journal of Engineering Manufacture, 2016, 231(5):739-752.
[19]  韩荣第, 姚洪权, 严春华, 等. SiCp/2024Al复合材料切削力与刀具磨损的试验研究[J]. 复合材料学报, 1997, 14(2):71-75. HAN R D, YAO H Q, YAN C H, et al. Experimental study on the cutting force and wear of lathe tool for SiCP/2024Al composite[J]. Acta Materiae Compositae Sinica, 1997, 14(2):71-75(in Chinese).
[20]  EL-GALLAB M, SKLAD M. Machining of Al/SiC particulate metal-matrix composites part I:Tool performance[J]. Journal of Materials Processing Technology, 1998, 83(1-3):151-158.
[21]  RABINOWICZ E, TANNER R I. Friction and wear of materials[J]. Journal of Applied Mechanics, 1966, 33(2):606-611.
[22]  KANNAN S, KISHAWY H A. Tribological aspects of machining aluminum metal matrix composites[J]. Journal of Materials Processing Technology, 2008, 198(1):399-406.
[23]  LIN C B, HUNG Y W, LIU W C, et al. Machining and fluidity of 356Al/SiCp composites[J]. Journal of Materials Processing Technology, 2001, 110(2):152-159.
[24]  DAVIM J P. Diamond tool performance in machining metal-matrix composites[J]. Journal of Materials Processing Technology, 2002, 128(1-3):100-105.
[25]  MUTHUKRISHNAN N, DAVIM J P. An investigation of the effect of work piece reinforcing percentage on the machinability of Al-SiC metal matrix composites[J]. Journal of Mechanical Engineering Research, 2011, 3(1):15-24.
[26]  陈日曜. 金属切削原理[M]. 北京:机械工业出版社, 2002. CHEN R Y. The principle of metal cutting[M]. Beijing:China Machine Press, 2001(in Chinese).
[27]  徐济鋆, 鲁钟琪. 沸腾传热和气液两相流[M]. 北京:原子能出版社, 1993. XU J Y, LU Z Q. Boiling heat transfer and gas-liquid two-phase flow[M]. Beijing:Atomic Energy Press, 2001(in Chinese).

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133