全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2019 

基于空间限域强制组装法制备短切碳纤维-碳纳米管/聚二甲基硅氧烷导电复合材料性能
Properties of short carbon fiber-carbon nanotubes/polydimethylsiloxane conductive composites prepared by spatial confining forced network assembly method

DOI: 10.13801/j.cnki.fhclxb.20190320.002

Keywords: 复合材料,空间限域,强制组装,电导率,导电网络,力学性能
composites
,spatial confining,forced assembly,electrical conductivity,conductive network,mechanical properties

Full-Text   Cite this paper   Add to My Lib

Abstract:

References

[1]  付豪, 陈俊林, 王凯, 等. 热处理对碳纤维/聚酰胺6复合材料界面结晶及力学性能的影响[J]. 复合材料学报, 2018, 35(4):815-822. FU H, CHEN J L, WANG K, et al. Effects of heat treatments on the interfacial crystalization and mechanical properties of carbon fiber/polyamide 6 composites[J]. Acta Materiae Compositae Sinica, 2018, 35(4):815-822(in Chinese).
[2]  ROH E, HWANG B U, KIM D, et al. Stretchable, transparent, ultrasensitive, and patchable strain sensor for human-machine interfaces comprising a nanohybrid of carbon nanotubes and conductive elastomers[J]. ACS Nano, 2015, 9(6):6252-6261.
[3]  SUZUKI K, YATAKA K, OKUMIYA Y, et al. Rapid-response, widely stretchable sensor of aligned MWCNT/elastomer composites for human motion detection[J]. ACS Sensors, 2016, 1(6):817-825.
[4]  WANG H L, HAO Q L, YANG X J, et al. A nanostructured graphene/polyaniline hybrid material for supercapacitors[J]. Nanoscale, 2010, 2(10):2164-2170.
[5]  QI X Y, YAN D, JIANG Z G, et al. Enhanced electrical conductivity in polystyrene nanocomposites at ultra-low graphene content[J]. ACS Applied Materials & Interfaces, 2011, 3(8):3130-3133.
[6]  CHANG C M, LIU Y L. Electrical conductivity enhancement of polymer/multiwalled carbon nanotube (MWCNT) composites by thermally-induced defunctionalization of MWCNTs[J]. ACS Applied Materials & Interfaces, 2011, 3(7):2204-2208.
[7]  中国国家标准化管理委员会. 塑料拉伸性能的测定第1部分:总则:GB/T 1040.1-2006[S]. 北京:中国标准出版社, 2007.Standardization Administration of the People's Republic of China. Plastics:Determination of tensile properties Part 1:General principles:GB/T 1040.1-2006[S]. Beijing:China Standards Press, 2007(in Chinese).
[8]  龚文化, 曾黎明. 聚合物基导电复合材料研究进展[J]. 化工新型材料, 2002, 30(4):38-40. GONG W H, ZENG L M. Progress of polymer matrix conductive composites[J]. New Chemical Materials, 2002, 30(4):38-40(in Chinese).
[9]  宋正辉, 陈世鹏, 黄超, 等. 碳基聚丙烯导电复合材料的制备及性能研究[J]. 塑料科技, 2015, 43(6):55-60. SONG Z H, CHEN S P, HUANG C, et al. Study on properties of carbon-based polypropylene conductive composites and its preparation[J]. Plastics Science and Technology, 2015, 43(6):55-60(in Chinese).
[10]  KASGOZ A, AKIN D, AYTEN A I, et al. Effect of different types of carbon fillers on mechanical and rheological properties of cyclic olefin copolymer (COC) composites[J]. Composites Part B:Engineering, 2014, 66(4):126-135.
[11]  ALOQLA F M, SAPUAN S M. Natural fiber reinforced polymer composites in industrial applications:Feasibility of date palm fibers for sustainable automotive industry[J]. Journal of Cleaner Production, 2014, 66(3):347-354.
[12]  郑林宝, 王延相, 陈纪强, 等. CF-CNTs多尺度增强体的制备及CF-CNTs/环氧树脂复合材料力学性能[J]. 复合材料学报, 2017, 34(11):2428-2436. ZHENG L B, WANG Y X, CHEN J Q, et al. Preparation of CF-CNTs multiscale reinforcement and mechanical properties of CF-CNTs/epoxy composites[J]. Acta Materiae Compositae Sinica, 2017, 34(11):2428-2436(in Chinese).
[13]  CAO Z, WEI B. Fragmented carbon nanotube macrofilms as adhesive conductors for lithium-ion batteries[J]. ACS Nano, 2014, 8(3):3049-3059.
[14]  DENG H B, LIN L, SUN Y, et al. Activity and stability of perovskite-type oxide LaCoO3 catalyst in lignin catalytic wet oxidation to aromatic aldehydes process[J]. Energy & Fuels, 2009, 23(1):19-24.
[15]  MA Y Q, WU D K, ZHANG W, et al. Investigation of PI3K/PKB/mTOR/S6K1 signaling pathway in relationship of type 2 diabetes and alzheimer's disease[J]. International Journal of Clinical & Experimental Medicine, 2015, 8(10):18581-18590.
[16]  TANG G Q, JIANG Z G, LI X F, et al. Electrically conductive rubbery epoxy/diamine-functionalized graphene nanocomposites with improved mechanical properties[J]. Composites Part B:Engineering, 2014, 67:564-570.
[17]  LI E Y, MARZARI N. Improving the electrical conductivity of carbon nanotube networks:A first-principles study[J]. ACS Nano, 2011, 5(12):9726-9736.
[18]  BEKVAROVA E, THOSTENSON E T, YU A, et al. Multiscale carbon nanotube carbon fiber reinforcement for advanced epoxy composites[J]. Langmuir, 2007, 23(7):3970-3974.
[19]  TKALYA E, GHISLANDI M, OTTEN R, et al. Experimental and theoretical study of the influence of the state of dispersion of graphene on the percolation threshold of conductive graphene/polystyrene nanocomposites[J]. ACS Applied Materials & Interfaces, 2014, 6(17):15113-15121.
[20]  MAO C, ZHU Y T, JIANG W. Design of electrical conductive composites:tuning the morphology to improve the electrical properties of graphene filled immiscible polymer blends[J]. ACS Applied Materials & Interfaces, 2012, 4(10):5281-5286.
[21]  GAO X L, HUANG Y, LIU Y, et al. Improve delectrical conductivity of PDMS/SCF composite sheets with bolting cloth prepared by a spatial confining forced network assembly method[J]. RSC Advances, 2017, 7(24):14761-14768.
[22]  WU D M, GAO X L, SUN J Y, et al. Spatial confining forced network assembly for prepration of high-performance conductive polymeric composites[J]. Composites Part A:Applied Science & Manufacturing, 2017, 102:88-95.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133