全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2019 

基于遗传算法的飞机复合材料结构装配压紧力大小与布局的优化基于遗传算法的飞机复合材料结构装配压紧力大小与布局的优化
Optimization of size and layout of pressing force for composite airframe structure assembly based on genetic algorithm

DOI: 10.13801/j.cnki.fhclxb.20180816.001

Keywords: 飞机装配,复合材料结构,装配压紧力,力控制技术,遗传算法
aircraft assembly
,composites structure,assembly pressing force,force control,genetic algorithms

Full-Text   Cite this paper   Add to My Lib

Abstract:

For the assembly gap in composite airframe structure, an optimization method based on genetic algorithm was proposed to optimize the size and layout of pressing force, in which damage caused by pressing force was considered. Combining with finite element analysis, considering the interference between pressing points, with laminates delamination as the constraint condition and elimination rate of gap as the objective function, the optimization model with size and layout of pressing force was established. Taking composite win box as an example, establishing finite element model based on cohesive element, the optimization method was applied to optimize pressing force on composite panel. Then, with the optimum size and layout of pressing force, the elimination rate of gap, delamination damage, stress and strain were calculated and analyzed. The results demonstrate that:the optimum pressing force makes stress and strain distribution more uniform; elimination rate of gap is improved dramatically compared with the traditional one without laminates delamination. When the initial assembly gap is 0.2-0.8 mm, the elimination rate of gap is increased to 77.4%-100%, which is 19.2%-177.8% higher than that before the optimization. 江苏省精密与微细制造技术重点实验室基本科研业务重点项目(ZAA1400105

References

[1]  ZHANG X, CHEN Y, HU J. Recent advances in the development of aerospace materials[J]. Progress in Aerospace Sciences, 2018, 97:22-34.
[2]  杜善义. 先进复合材料与航空航天[J]. 复合材料学报, 2007, 24(1):1-12. DU S Y. Advanced composite materials and aerospace engineering[J]. Acta Materiae Compositae Sinica, 2007, 24(1):1-12(in Chinese).
[3]  马立敏, 张嘉振, 岳广全, 等. 复合材料在新一代大型民用飞机中的应用[J]. 复合材料学报, 2015, 32(2):317-322. MA L M, ZHANG J Z, YUE G Q, et al. Application of composites in new generation of large civil aircraft[J]. Acta Materiae Compositae Sinica, 2015, 32(2):317-322(in Chinese).
[4]  EDWARDS M R. Materials for military helicopters[J]. Proceedings of the Institution of Mechanical Engineers Part G:Journal of Aerospace Engineering, 2002, 216(2):77-88.
[5]  PIMENTA S, PINHO S T. Recycling carbon fibre reinforced polymers for structural applications:Technology review and market outlook[J]. Waste Management, 2011, 31(2):378-392.
[6]  KELLY A. Very stiff fibres woven into engineering's future:A long-term perspective[J]. Journal of Materials Science, 2008, 43(20):6578-6585.
[7]  拉卡德B H. 复合材料及结构的缺陷和损伤[M]. 张晓军等译. 北京:国防工业出版社, 2017:3-16. Rikard Benton Heslehurs. Defects and damage in composite materials and structure[M]. Translated by ZHANG X J, et al. Beijing:National Defend Industry Press, 2017:3-16(in Chinese).
[8]  李东升, 翟雨农, 李小强. 飞机复合材料结构少无应力装配方法研究与应用进展[J]. 航空制造技术, 2017, 528(9):30-34. LI D S, ZHAI Y N, LI X Q. Research and application advances of stress-less assembly methods for composite airframe[J]. Aeronautical Manufacturing Technology, 2017, 528(9):30-34(in Chinese).
[9]  RAMIREZ J, WOLLNACK J. Flexible automated assembly systems for large CFRP-structures[J]. Procedia Technology, 2014, 15:447-455.
[10]  ZHANG W, AN L, JIANG Q, et al. Interference detection algorithm of aircraft components assembly based on measured data[C]//National Conference on Electrical, Electronics and Computer Engineering, 2015:891-898.
[11]  蒋麒麟, 安鲁陵, 云一珅, 等. 间隙补偿对单螺栓连接层合板轴向刚度的影响研究[J]. 玻璃钢/复合材料, 2016(11):59-64. JIANG Q L, AN L L, YUN Y S, et al. Effect of gap compensation on axial stiffness in single bolt fastening com-posite laminates[J]. Fiber Reinforced Plastics/Composites, 2016(11):59-64(in Chinese).
[12]  JONSSON M. On Manufacturing technology as an enabler of fexibility:Affordable reconfigurable tooling and force-controlled robotics[D]. Sweden:Link?ping University, 2013.
[13]  王亮. 飞机数字化装配柔性工装技术及系统研究[D]. 北京:北京航空航天大学, 2010. WANG L. Flexible tooling technology system for aircraft digital assembly[D]. Beijing:Beihang University, 2010(in Chinese).
[14]  WU F, LI D, DU B. Optimal assembly of a skin panel onto the fuselage framework based on force control technology[J]. ARCHIVE Proceedings of the Institution of Mechanical Engineers Part E:Journal of Process Mechanical Engineering, 2015, 230(6):1-5.
[15]  李莉. 机械零件疲劳强度若干问题的研究[D]. 沈阳:东北大学, 2009. LI L. Research on fatigue strength of mechanical components[D]. Shenyang:Northeastern University, 2009(in Chinese).
[16]  张桂书. 飞机复合材料构件装配间隙补偿研究[D]. 南京:南京航空航天大学, 2015. ZHANG G S. Research on assembly gap compensation for aircraft composite components[D]. Nanjing:Nanjing University of Aeronautics and Astronautics, 2015(in Chinese).
[17]  谭建设, 张晓晶, 张俊琪, 汪海. 复合材料层合板低速冲击的接触力和能量响应仿真[J]. 复合材料学报, 2014, 31(4):970-980. TAN J S, ZHANG X J, ZHANG J Q, et al. Simulation of impact force and energy response of composite laminate subjected to low velocity impact[J]. Acta Materiae Compositae Sinica, 2014, 31(4):970-980.
[18]  TURON A, CAMANHO P P, COSTA J, et al. Accurate simulation of delamination growth under mixed-mode loading using cohesive elements:Definition of interlaminar strengths and elastic stiffness[J]. Composite Structures, 2010, 92(8):1857-1864.
[19]  曾刚, 程文明, 曾鸣. 基于遗传算法的机械零部件可靠性优化设计[J]. 机械设计与制造, 2012(10):1-3. ZENG G, CHENG W M, ZENG M. Reliability-optimization design of the mechanical units based on genetic algorithm[J]. Machinery Design & Manufacture, 2012(10):1-3(in Chinese).
[20]  郭惠昕, 张龙庭. 混合离散变量优化设计的复合遗传算法[J]. 机械设计, 2005(03):9-11. GUO H X, ZHANG L T. Compound genetic algorithm on optimization design of hybrid discrete variables[J]. Journal of Machine Design, 2005(03):9-11(in Chinese).
[21]  蒋麒麟, 安鲁陵, 云一珅, 等. 间隙补偿及液体垫片参数对层合板单层与层间应力的影响[J]. 机械科学与技术, 2017, 36(10):1633-1640. JIANG Q L, AN L L, YUN Y S, et al. Effect of gap compensation and parameters of liquid shim on composite laminates internal stress and interlaminar stress[J]. Mechanical Science and Technology for Aerospace Engineering, 2017, 36(10):1633-1640(in Chinese).
[22]  IRISARRI F X, LAURIN F, CARRERE N, et al. Progressive damage and failure of mechanically fastened joints in CFRP laminates:Part I-Refined finite element modelling of single-fastener joints[J]. Composite Structures, 2012, 94(8):2269-2277.
[23]  刘怡冰. 复合材料翼盒制造工艺研究与实现[D]. 南京:南京航空航天大学, 2015. LIU Y B. Research and implement of the composite wing box manufacturing process[D]. Nanjing:Nanjing University of Aeronautics and Astronautics, 2015(in Chinese).
[24]  云一珅. 填隙补偿参数对复合材料螺栓连接结构的力学性能的影响研究[D]. 南京:南京航空航天大学, 2017. YUN Y S. Research on the effect of gap-filling parameters on mechanical behavior of the bolt connected composite structure[D]. Nanjing:Nanjing University of Aeronautics and Astronautics, 2017(in Chinese).
[25]  岳烜德, 安鲁陵, 云一珅, 等. 液体垫片对复合材料单搭接螺栓接头力学性能的影响[J]. 复合材料学报, 2018, 35(1):50-60. YUE X D, AN L L, YUN Y S, et al. Influences of the liquid shim on the mechanical properties of single-lap composite bolted joint[J]. Acta Materiae Compositae Sinica, 2018, 35(1):50-60(in Chinese).
[26]  JONSSON M, MURRAY T, ROBERTSSON A, et al. Force feedback for assembly of aircraft structures[J]. Sae Technical Papers, 2010, 1827(1):1-9.
[27]  S?DERBERG R, W?RMEFJORD K, LINDKVIST L. Variation simulation of stress during assembly of composite parts[J]. CIRP Annals-Manufacturing Technology, 2015, 64(1):17-20.
[28]  CORRADO A, POLINI W. Assembly design in aeronautic field:From assembly jigs to tolerance analysis[J]. Proceedings of the Institution of Mechanical Engineers Part B:Journal of Engineering Manufacture, 2017, 231(14):2652-2663.
[29]  岳烜德, 安鲁陵, 云一珅, 等. 液体垫片对复合材料装配结构应力和应变的影响[J]. 复合材料学报, 2018, 35(10):71-83.YUE X D, AN L L, YUN Y S, et al. Effect of liquid shim on strain and stress of composite assembly structure[J]. Acta Materiae Compositae Sinica, 2018, 35(10):71-83(in Chinese).
[30]  习年生, 于志成, 陶春虎. 纤维增强复合材料的损伤特征及失效分析方法[J]. 航空材料学报, 2000, 20(2):55-63. XI N S, YU Z C, TAO C H. Damage characterization and failure analysis in fiber reinforced composites[J]. Journal of Aeronautical Materials, 2000, 20(2):55-63(in Chinese).
[31]  JAMIE S. Concept development of an automated shim cell for F-35 forward fuselage outer mold line control[D]. Menomonie:University of Wisconsin at Stout, 2011.
[32]  韩学群. 复合材料层合板分层损伤数值模拟[D]. 武汉:武汉理工大学, 2010. HAN X Q. Numerical simulation of delamination damage for composite laminates[D]. Wuhan:Wuhan University of Technology, 2010(in Chinese).
[33]  TURON A, CAMANHO P P, COSTA J, et al. An interface damage model for the simulation of delamination under variable-mode ratio in composite materials[J]. Recercat Home, 2004.
[34]  CAMPONESCHI E T, BOHLMANN R E, FOGARTY J H. Composite to metal joints for the ARPA man-rated demonstration article[J]. Journal of Thermoplastic Composite Materials, 1995, 8(1):56-79.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133