全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2019 

双悬臂梁试件裂纹动态扩展的准静态数值分析
A quasi-static numerical analysis of crack dynamic propagation in double cantilever beam specimens

DOI: 10.13801/j.cnki.fhclxb.20180726.002

Keywords: 断裂动力学,有限元分析,应变能释放率,非稳定裂纹扩展,虚拟裂纹闭合技术
dynamic fracture mechanics
,finite element method,strain energy release rate,unstable crack propagation,virtual crack closure technique

Full-Text   Cite this paper   Add to My Lib

Abstract:

本文采用双悬臂梁(DCB)试件研究了复合材料层合板层间插入韧性胶膜(Interleaf)层的Ⅰ型断裂行为。试验结果表明,含和不含Interleaf层试件分别呈现脆性非稳态和脆性稳态分层扩展特性。针对非稳定裂纹扩展问题,依据动态断裂力学中应变能释放率与动能变化率的关系,提出了以断裂韧性值GIC变化来抵消动能变化对裂纹扩展过程影响的准静态分析方法,根据试验中裂纹扩展的韧性变化,推导出适用于准静态裂纹扩展模拟的等效韧性GIC*,利用ABAQUS平台和虚裂纹闭合技术(VCCT)建立了三维有限元计算模型;实现了从起裂到止裂的整个裂纹动态扩展过程的数值模拟,揭示了非稳定裂纹扩展过程中一些复杂的力学现象。 The mode I interlaminar fracture toughness of composite laminates with epoxy interleaf was studied in the double cantilever beam (DCB) tests. Brittle unstable and stable delaminations were observed in the specimens with and without interleaf respectively. For the unstable crack growth, based on dynamic fracture mechanics, the relation between strain energy release rate and the change of kinetic energy was analyzed. A static simulation method for dynamic crack growth was proposed, which transformed the change of kinetic energy into the change of input fracture toughness (GIC*). GIC* was calculated according to the evolution of fracture resistance in the tests and input into ABAQUS for the simulation of crack growth using virtual crack closure technique (VCCT). A three-dimensional finite element model was constructed to simulate the dynamic delamination growth from crack onset to arrest, and the complex mechanical behavior in the unstable crack growth was studied. 国家自然科学基金(11832014

References

[1]  董慧民, 益小苏, 安学锋, 等. 纤维增强热固性聚合物基复合材料层间增韧研究进展[J]. 复合材料学报, 2014, 31(2):273-285. DONG H M, YI X S, AN X F, et al. Development of interleaved fibre-reinforced thermoset polymer matrix composites[J]. Acta Materiae Compositae Sinica, 2014, 31(2):273-285(in Chinese).
[2]  高峰, 矫桂琼, 高艳秋, 等. 层间颗粒增韧HT3/QY8911的损伤阻抗和损伤容限[J]. 复合材料学报, 2006, 23(1):167-172. GAO F, JIAO G Q, GAO Y Q, et al. Damage resistance and damage tolerance of HT3/QY8911 with thermoplastic particle interlayers[J]. Acta Materiae Compositae Sinica, 2006, 23(1):167-172(in Chinese).
[3]  GUO C, SUN C T. Dynamic mode I crack-propagation in a carbon/epoxy composite[J]. Composites Science & Technology, 1998, 58(9):1405-1410.
[4]  HOJO M, ANDO T, TANAKA M, et al. Modes I and Ⅱ interlaminar fracture toughness and fatigue delamination of CF/epoxy laminates with self-same epoxy interleaf[J]. International Journal of Fatigue, 2006, 28(10):1154-1165.
[5]  KINLOCH A J, SANCHEZ F R. The fracture behaviour of structural adhesives under high rates of testing[J]. Engineering Fracture Mechanics, 2009, 76(18):2868-2889.
[6]  MOTT N F. Fracture of metals:Theoretical considerations[J]. Engineering, 1948, 165:16-18.
[7]  范天佑. 断裂动力学原理与应用[M]. 北京:北京理工大学出版社, 2006. FAN T Y. Principle and application of fracture dynamics[M]. Beijing:Beijing Institute of Technology Press, 2006(in Chinese).
[8]  KUSAKA T, HOJO M, MAI Y W, et al. Rate dependence of mode I fracture behaviour in carbon-fibre/epoxy composite laminates[J]. Composites Science & Technology, 1998, 58(3-4):591-602.
[9]  Abaqus analysis user's guide:Crack propagation analysis[EB/OL]. Dassult:Abaqus 6.14 Online Documentation, 2014.
[10]  HEIDARI-RARANI M, SHOKRIEH M M, CAMANHO P P. Finite element modeling of mode I delamination growth in laminated DCB specimens with R-curve effects[J]. Composites Part B:Engineering, 2013, 45(1):897-903.
[11]  SUN C, THOULESS M D, WAAS A M, et al. Ductile-brittle transitions in the fracture of plastically deforming, adhesively bonded structures. Part Ⅱ:numerical studies[J]. International Journal of Solids and Structures, 2008, 45(17):4725-4738.
[12]  BLACKMAN B R K, KINLOCH A J, SANCHEZ F S R, et al. The fracture behaviour of structural adhesives under high rates of testing[J]. Engineering Fracture Mechanics, 2009, 76(18):2868-2889.
[13]  KARAC A, BLACKMAN B R K, COOPER V, et al. Modelling the fracture behaviour of adhesively-bonded joints as a function of test rate[J]. Engineering Fracture Mechanics, 2011, 78(6):973-989.
[14]  WANG J, XIAO Y. Some improvements on Sun-Chen's one-parameter plasticity model for fibrous composites (Part Ⅱ:Finite element method implementation and applications)[J]. Journal of Composite Materials, 2017, 51(4):533-545.
[15]  DAVIDSON B D. An analytical investigation of delamination front curvature in double cantilever beam specimens[J]. Journal of Composite Materials, 1990, 24(11):1124-1137.
[16]  MARJANOVI AC'G M, MESCHKE G, VUKSANOVI AC'G D. A finite element model for propagating delamination in laminated composite plates based on the virtual crack closure method[J]. Composite Structures, 2016, 150:8-19.
[17]  HADAVINIA H, GHASEMNEJAD H. Effects of mode I and mode Ⅱ interlaminar fracture toughness on the energy absorption of CFRP twill/weave composite box sections[J]. Composite Structures, 2009, 89(2):303-314.
[18]  REHAN M S B M, ROUSSEAU J, FONTAINE S, et al. Experimental study of the influence of ply orientation on DCB mode-I delamination behavior by using multidirectional fully isotropic carbon/epoxy laminates[J]. Composite Structures, 2017, 161:1-7.
[19]  DAVIDSON P, WAAS A M. Non-smooth mode I fracture of fibre-reinforced composites:An experimental, numerical and analytical study[J]. Philosophical Transactions of the Royal Society A:Mathematical, Physical and Engineering, 2012, 370(1965):1942-1965.
[20]  张振亚, 段忠, 周风华. 脆性裂纹动态传播中的速度振荡现象和理论分析[J]. 力学学报, 2013, 45(5):729-738. ZHANG Z Y, DUAN Z, ZHOU F H. Experimental and theoretical investigations on the velocity oscillations of dynamic crack propagating in brittle material tension[J]. Chinese Journal of Theoretical and Applied Mechanics, 2013, 45(5):729-738(in Chinese).
[21]  KANNINEN M F. A dynamic analysis of unstable crack propagation and arrest in the DCB test specimen[J]. International Journal of Fracture, 1973, 10(3):415-430.
[22]  SHOKRIEH M M, RAJABPOUR-SHIRAZI H, HEIDARI-RARANI M, et al. Simulation of mode I delamination propagation in multidirectional composites with R-curve effects using VCCT method[J]. Computational Materials Science, 2012, 65:66-73.
[23]  庄茁. 断裂动力学有限元程序的开发及在天然气管道裂纹扩展问题上的应用[J]. 工程力学, 1999, 16(1):105-114. ZHUANG Z. The development and application of the dynamic fracture analysis code for crack propagation ingas pipelines[J]. Engineering Mechanics, 1999, 16(1):105-114(in Chinese).
[24]  乔文静, 肖毅, 福田博, 等. 内埋元件复合材料层合板分层损伤的试验及数值研究[J]. 玻璃钢/复合材料, 2014(6):4-11. QIAO W J, XIAO Y, HIROSHI F, et al. An experimental and numerical investigation on the delamination in composite laminates with embedded devices[J]. Fiber Reinforced Plastics/composites, 2014(6):4-11(in Chinese).
[25]  XIAO Y, QIAO W, FUKUDA H, et al. The effect of embedded devices on structural integrity of composite laminates[J]. Composite Structures, 2016, 153:21-29.
[26]  GDOUTOS E E. Fracture mechanics[M]. Springer, 2005.
[27]  ASTM International. Standard test method for mode Ⅰ interlaminar fracture toughness of unidirectional fiber-reinforced polymer matrix composites:ASTM D5528-13[S]. West Conshohocken:ASTM International, 2013.
[28]  HASHEMI S, KINLOCH A J, WILLIAMS J G. Corrections needed in double-cantilever beam tests for assessing the interlaminar failure of fibre-composites[J]. Journal of Materials Science Letters, 1989, 8(2):125-129.
[29]  SUN C T, ZHENG S. Delamination characteristics of double-cantilever beam and end-notched flexure composite specimens[J]. Composites Science & Technology, 1996, 56(4):451-459.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133