|
- 2019
PEK-C膜层间增韧碳纤维/环氧树脂复合材料的力学性能
|
Abstract:
为探究热塑性酚酞基聚醚酮(Polyaryletherketone with Cardo,PEK-C)树脂薄膜及膜厚对层间增韧碳纤维/环氧树脂复合材料力学性能的影响,利用浸渍提拉法制备了三种不同厚度(分别约为1 μm、10 μm、30 μm)的PEK-C膜,通过热压成型制备了层间增韧碳纤维/环氧树脂复合材料层合板,对其进行了Ⅰ型层间断裂韧性、冲击后压缩强度、层间剪切及弯曲性能测试,并利用SEM观察微观形貌及AFM扫描微观相图。结果表明:不同PEK-C膜厚增韧碳纤维/环氧树脂复合材料的Ⅰ型层间断裂韧性、冲击后压缩强度及层间剪切强度有不同程度提高,Ⅰ型层间断裂韧性及层间剪切强度以膜厚为10 μm最佳,分别增大了157.17%和17.57%,冲击后压缩强度以膜厚为30 μm最佳,达到了186.67 MPa,这是由于PEK-C与环氧树脂在热压固化过程中形成了双相结构,改善了材料韧性;但弯曲性能持续下降,强度及模量由未增韧的1 551 MPa、106 GPa分别降至30 μm时的965 MPa、79 GPa,这是由于PEK-C树脂扩散进入环氧树脂中,降低了纤维体积分数及材料刚度。 The thermoplastic resin polyaryletherketone with cardo (PEK-C) films of three different thicknesses (about 1 μm, 10 μm, 30 μm) were prepared by dip-coating method. Hot pressing technology was employed to obtain the film interleaved carbon fiber/epoxy composite laminates. The mode I interlaminar fracture toughness (GIC), compressive after impact (CAI), interlaminar shear strength and flexural properties were tested to investigate the effect of PEK-C film and film thickness on the mechanical properties of carbon fiber/epoxy composites. The microstructure was observed by SEM and the phase structure was scanned by AFM. The results show that GIC, CAI and interlaminar shear strength increase for the carbon fiber/epoxy composite laminates with PEK-C films of different thickness. GIC and shear strength are increased maximally at a film thickness of 10 μm, which are increased by 157.17% and 17.57%, respectively. CAI is the largest at a film thickness of 30 μm, reaching 186.67 MPa due to the fact that PEK-C and epoxy resin form a dual-phase structure during the hot pressing curing process, improving the toughness of the material. The flexural strength and flexural modulus of carbon fiber/epoxy composite laminates decrease with the increase of the film thickness, from 1 551 MPa, 106 GPa without films to 965 MPa, 79 GPa at the film thickness of 30 μm due to the diffusion of PEK-C resin into the epoxy resin, which reduces the fiber volume fraction and material stiffness. 国家自然科学基金(51402356);中央高校基本科研费(3122017112
[1] | NJUGUNA J, PIELICHOWSKI K, ALCOCK J. Epoxy-based fibre reinforced nanocomposites[J]. Advanced Engineering Materials, 2007, 9(10):835-847. |
[2] | 益小苏, 许亚洪, 程群峰, 等. 航空树脂基复合材料的高韧性化研究进展[J]. 科技导报, 2008, 26(6):84-92. YI X S, XU Y H, CHENG Q F, et al. Development of studies on polymer matrix aircraft composite materials highly toughened[J]. Science & Technology Review, 2008, 26(6):84-92(in Chinese). |
[3] | ARAI M, NORO Y, SUGIMOTO K I, et al. Mode Ⅰ and mode Ⅱ interlaminar fracture toughness of CFRP laminates toughened by carbon nanofiber interlayer[J]. Composites Science & Technology, 2008, 68(2):516-525. |
[4] | LI P, LIU D, ZHU B, et al. Synchronous effects of multiscale reinforced and toughened CFRP composites by MWNTs-EP/PSF hybrid nanofibers with preferred orientation[J]. Composites Part A:Applied Science and Manufacturing, 2015, 68:72-80. |
[5] | LUO L, ZHANG Z G, LI M, et al. The effect of rigid particle interlayer toughening on damage resistance and mechanical properties of composite laminate[J]. Key Engineering Materials, 2007, 334-335:505-508. |
[6] | NASH N, YOUNG T, STANLEY W. An investigation of the damage tolerance of carbon/benzoxazine composites with a thermoplastic toughening interlayer[J]. Composite Structures, 2016, 147:25-32. |
[7] | BOYD S E, BOGETTI T A, STANISZEWSKI J M, et al. Enhanced delamination resistance of thick-section glass-epoxy composite laminates using compliant thermoplastic polyurethane interlayers[J]. Composite Structures, 2018, 189:184-191. |
[8] | 刘立朋, 益小苏, 安学锋, 等. T800/5228A复合材料层间增韧改性[J]. 宇航材料工艺, 2015(2):37-42. LIU L P, YI X S, AN X F, et al. Interlaminar toughness optimizing for T800/5228A composite[J]. Aerospace Materials and Technology, 2015(2):37-42(in Chinese). |
[9] | ASTM International. Standard test method for measuring the damage resistance of a fiber-reinforced polymer matrix composite to a drop-weight impact event:ASTM D7136M-05[S]. West Conshohocken:ASTM International, 2005. |
[10] | ASTM International. Standard Test Method for Compressive Residual Strength Properties of Damaged Polymer Matrix Composite Plate:ASTM D7137M-05[S]. West Conshohocken:ASTM International, 2005. |
[11] | International Organization for Standardization. Fibre-reinforced plastic composites:Determination of apparent interlaminar shear strength by short-beam method:ISO 14130-1997[S]. Geneva:International Organization for Standardization, 1997. |
[12] | 赵俊丽. 高分子薄膜的提拉法制备及成膜机理研究[D]. 上海:东华大学, 2014. ZHAO J L. Fabrication of polymer film by dip-coating method and film-forming mechanism investigation[D]. Shanghai:East China University, 2014(in Chinese). |
[13] | 张兴迪. 含磷聚芳醚酮"离位"增韧RTM双马树脂基复合材料性能研究[D]. 长春:吉林大学, 2016. ZHANG X D. Properties of BMI composites ex-situ toughened with phosphorus-containing poly(arylene ether ketone)[D]. Changchun:Jilin University, 2016(in Chinese). |
[14] | 程群峰. 双马来酰亚胺树脂基复合材料的离位增韧研究[D]. 杭州:浙江大学, 2007. CHENG Q F. Studies on toughening composites based on BMI resin by ex-situ concept[D]. Hangzhou:Zhejiang University, 2007(in Chinese). |
[15] | 韩学群. 复合材料层合板分层损伤数值模拟[D]. 武汉:武汉理工大学, 2010. HAN X Q. Numerical simulation of layered damage of composite laminated plates[D]. Wuhan:Wuhan University of Technology, 2010(in Chinese). |
[16] | 邓火英, 王立敏, 冯奕钰, 等. 碳纳米管膜层间增韧对碳纤维复合材料力学性能的影响[J]. 宇航材料工艺, 2015(5):31-35. DENG H Y, WANG L M, FENG Y Y, et al. Effect of carbon nanotube film interlayer toughening on mechanical properties of carbon fiber reinforced composite[J]. Aerospace Materials & Technology, 2015(5):31-35(in Chinese). |
[17] | ZHANG J, YANG T, LIN T, et al. Phase morphology of nanofibre interlayers:Critical factor for toughening carbon/epoxy composites[J]. Composites Science & Technology, 2012, 72(2):256-262. |
[18] | ZHANG J, LIN T, WANG X. Electrospun nanofibre toughened carbon/epoxy composites:Effects of polyetherketone cardo (PEK-C) nanofibre diameter and interlayer thickness[J]. Composites Science & Technology, 2010, 70(11):1660-1666. |
[19] | LI G, YU Y, LI P, et al. Inhomogeneous toughening of carbon fiber/epoxy composite using electrospun polysulfone nanofibrous membranes by in situ phase separation[J]. Composites Science & Technology, 2008, 68(3):987-994. |
[20] | ZENG S, HOISINGTON M, SEFERIS J C. Particulate interlayer toughening of dicyanate matrix composites[J]. Polymer Composites, 2010, 14(6):458-466. |
[21] | HSIAO H M, NI C N, WU M D, et al. A novel optical technique for observation of global particle distribution in toughened composites[J]. Composites Part A:Applied Science & Manufacturing, 2012, 43(9):1523-1529. |
[22] | 莫正才, 胡程耀, 霍冀川, 等. 苎麻短纤维层间增韧碳纤维/环氧树脂复合材料[J]. 复合材料学报, 2017, 34(6):1237-1244. MO Z C, HU C Y, HUO J C, et al. Interlayer-toughening carbon fiber/epoxy composites with short ramie fiber[J]. Acta Materiae Compositae Sinica, 2017, 34(6):1237-1244(in Chinese). |
[23] | YUN N G, YONG G W, KIM S C. Toughening of carbon fiber/epoxy composite by inserting polysulfone film to form morphology spectrum[J]. Polymer, 2004, 45(20):6953-6958. |
[24] | HOJO M, ANDO T, TANAKA M, et al. Modes Ⅰand Ⅱ interlaminar fracture toughness and fatigue delamination of CF/epoxy laminates with self-same epoxy interleaf[J]. International Journal of Fatigue, 2006, 28(10):1154-1165. |
[25] | 贾宝珠. 酚酞聚芳醚酮(砜)的改性研究[D]. 长春:长春工业大学, 2011. JIA B Z. The modification of phenolphthalein polyetherketone(sulfone) resin[D]. Changchun:Changchun University of Technology, 2011(in Chinese). |
[26] | SONG X, ZHENG S, HUANG J, et al. Miscibility and mechanical properties of tetrafunctional epoxy resin/phenolphthalein poly(ether ether ketone) blends[J]. Journal of Applied Polymer Science, 2015, 79(4):598-607. |
[27] | ASTM International. Standard test method for mode Ⅰ interlaminar fracture toughness of unidirectional fiber-reinforced polymer matrix composites:ASTM D5528-01[S]. West Conshohocken:ASTM International, 2001. |
[28] | NING H, INOUE T, ITO H, et al. Improvement of interlaminar fracture toughness of Al/GFRP laminates[J]. International Journal of Automotive Composites, 2014, 1(1):064111. |
[29] | International Organization for Standardization. Fibre-reinforced plastic composites:Determination of flexural properties:ISO 14125-1998[S]. Geneva:International Organization for Standardization, 1998. |
[30] | 刘志真, 郭恩玉, 邢军, 等. "离位"增韧技术在碳纤维/RTM聚酰亚胺复合材料中的应用[J]. 复合材料学报, 2010, 27(6):1-8. LIU Z Z, GUO E Y, XING J, et al. Application of carbon fiber/RTM able polyimide composites by ex-situ toughness method[J]. Acta Materiae Compositae Sinica, 2010, 27(6):1-8(in Chinese). |
[31] | 孙筱辰. 纤维复合材料层合板的层间增韧及低速冲击研究[D]. 济南:山东大学, 2015. SUN X C. Study on interlayer toughening and low-speed impact of fiber composite laminates[D]. Ji'nan:Shandong University, 2015(in Chinese). |