|
- 2019
星型-箭头蜂窝结构的面内动态压溃行为
|
Abstract:
基于内凹机制,将星型和双箭头蜂窝的微结构巧妙结合,提出了一种新型拉胀蜂窝模型(简称星型-箭头蜂窝(SAH))。基于该模型,采用ANSYS/LS-DYNA有限元分析软件对其在不同冲击速度和不同相对密度下的变形模式进行了数值模拟研究。结果表明,在星型蜂窝(SSH)中加入箭头蜂窝的微结构将会减弱较低速度下动态压缩SSH时出现的局部"颈缩"现象,使SAH靠近冲击端附近出现了明显的"菱形"变形带,并具有更长的平台区和更高的平台应力。此外,在不同冲击速度下SAH单位质量的吸能值均大于SSH。详细讨论了冲击速度和相对密度对SAH平台应力的影响规律,并给出了平台应力的经验计算公式。 A novel honeycomb was proposed by adding double arrowhead cells into star-shaped honeycomb (SSH), and named as star-arrowhead honeycomb (SAH). The dynamic crushing behaviors and energy absorption capacities of the evolved structure SAH were systematically studied by finite element method with the commercial software package ANSYS/LS-DYNA explicit code. Adding double arrowhead cells into SSH improves the localized necking deformation of SSH under the low-velocity impact, enhances plateau stress, and makes a rhombus-shape band forming near the impact end. The results of finite element simulations show that SAH can absorb much more energy per unit mass than SSH under different impact velocities. Furthermore, the effects of the relative density and the impact velocity on the plateau stresses of SAH were discussed, and the empirical formula of plateau stress of SAH is given. 国家自然科学基金(11672013;11472025
[1] | ALDERSON A. A triumph of lateral thought[J]. Chemistry & Industry, 1999, 17(10):384-391. |
[2] | PRAWOTO Y. Seeing auxetic materials from the mechanics point of view:A structural review on the negative Poisson's ratio[J]. Computational Materials Science, 2012, 58:140-153. |
[3] | LAKES R. Foam structures with a negative Poisson's ratio[J]. Science, 1987, 235:1038-1041. |
[4] | 卢子兴, 李康. 手性和反手性蜂窝材料的面内冲击性能研究[J]. 振动与冲击, 2017, 36(21):16-22. LU Zixing, LI Kang. In-plane dynamic crushing of chiral and anti-chiral honeycombs[J]. Journal of Vibration and Shock, 2017, 36(21):16-22(in Chinese). |
[5] | 张新春, 祝晓燕, 李娜. 六韧带手性蜂窝结构的动力学响应特性研究[J]. 振动与冲击, 2016, 35(8):1-7. ZHANG Xinchun, ZHU Xiaoyan, LI Na. A study of the dynamic response characteristics of hexagonal chiral honeycombs[J]. Journal of Vibration and Shock, 2016, 35(8):1-7(in Chinese). |
[6] | 张伟, 侯文彬, 胡平. 新型负泊松比多孔吸能盒平台区力学性能[J]. 复合材料学报, 2015, 32(2):534-541. ZHANG Wei, HOU Wenbin, HU Ping. Mechanical properties of new negative Poisson's ratio crush box with cellular structure in plateau stage[J]. Acta Materiae Compositae Sinica, 2015, 32(2):534-541(in Chinese). |
[7] | FU M H, CHEN Y, HU L L. A novel auxetic honeycomb with enhanced in-plane stiffness and buckling strength[J]. Composite Structures, 2017, 160:574-585. |
[8] | 卢子兴, 武文博. 基于旋转三角形模型的负泊松比蜂窝材料面内动态压溃行为数值模拟[J]. 兵工学报, 2018, 39(1):153-160. LU Zixing, WU Wenbo. Numerical simulations for the in-plane dynamic crushing of honeycomb material with negative Poisson's ratio based on rotating triangle model[J]. Acta Armamentarii, 2018, 39(1):153-160(in Chinese). |
[9] | RUAN D, LU G, WANG B, et al. In-plane dynamic crushing of honeycombs-A finite element study[J]. International Journal of Impact Engineering, 2003, 28(2):161-182. |
[10] | EVANS K E, ALDERSON A. Auxetic materials:Functional materials and structures from lateral thinking![J]. Advanced Materials, 2000, 12(9):617-628. |
[11] | ZHANG X, AN L, DING H, et al. The influence of cell micro-structure on the in-plane dynamic crushing of honeycombs with negative Poisson's ratio[J]. Journal of Sandwich Structures & Materials, 2015, 17(1):26-55. |
[12] | LIU W, WANG N, LUO T, et al. In-plane dynamic crushing of re-entrant auxetic cellular structure[J]. Materials & Design, 2016, 100:84-91. |
[13] | QIAO J X, CHEN C Q. Analyses on the in-plane impact resistance of auxetic double arrowhead honeycombs[J]. Journal of Applied Mechanics, 2015, 82(5):51007. |
[14] | 韩会龙, 张新春. 星形节点周期性蜂窝结构的面内动力学响应特性研究[J]. 振动与冲击, 2017, 36(23):223-230. HAN Huilong, ZHANG Xinchun. In-plane dynamic impact response characteristics of periodic 4-point star-shaped honeycomb structures[J]. Journal of Vibration and Shock, 2017, 36(23):223-230(in Chinese). |
[15] | 卢子兴, 李康. 四边手性蜂窝动态压溃行为的数值模拟[J]. 爆炸与冲击, 2014, 34(2):181-187. LU Zixing, LI Kang. Numerical simulation on dynamic crushing behaviors of tetrachiral honeycomb[J]. Explosion and Shock Waves, 2014, 34(2):181-187(in Chinese). |
[16] | 秦浩星, 杨德庆. 任意负泊松比超材料结构设计的功能基元拓扑优化法[J]. 复合材料学报, 2018, 35(4):1014-1023. QIN Haoxing, YANG Deqing. Functional element topology optimal method of metamaterial design with arbitrary negative Poisson's ratio[J]. Acta Materiae Compositae Sinica, 2018, 35(4):1014-1023(in Chinese). |
[17] | LU Z X, LI X, YANG Z Y, et al. Novel structure with negative Poisson's ratio and enhanced Young's modulus[J]. Composite Structures, 2016, 138:243-252. |
[18] | LI D, YIN J, DONG L, et al. Strong re-entrant cellular structures with negative Poisson's ratio[J]. Journal of Materials Science, 2018, 53(5):3493-3499. |
[19] | FU M H, CHEN Y, HU L L. Bilinear elastic characteristic of enhanced auxetic honeycombs[J]. Composite Structures, 2017, 175:101-110. |
[20] | QIU X M, ZHANG J, YU T X. Collapse of periodic planar lattices under uniaxial compression. Part Ⅱ:Dynamic crushing based on finite element simulation[J]. International Journal of Impact Engineering, 2009, 36(10):1231-1241. |