全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2019 

平纹机织叠层复合材料飞轮弹性参数预测及测量
Elastic parameters prediction and measurement of plain woven laminated composite flywheel

DOI: 10.13801/j.cnki.fhclxb.20190117.001

Keywords: 复合材料飞轮,机织平纹,扇形单胞,等参数织造,变形测量
composite flywheel
,plain woven,sectorial unit cell,isoparametric weaving,deformation measurement

Full-Text   Cite this paper   Add to My Lib

Abstract:

针对纤维缠绕复合材料高速飞轮径向分层问题,提出环向和径向同时强化的圆环平纹织物结构,环向纱束为单一纤维束连续织造。建立了“平头梭形”截面的单胞模型,兼顾双向纱束轮廓差异。基于扇形单胞和矩形单胞结构相似性,定义了“等参数”织造约束条件。采用体积平均法预测圆环织物扇形单胞等效弹性参数,并采用轮缘径向多层分割模型,分析了机织飞轮旋转载荷下的应力和变形特征及其影响参数,轮缘理论计算位移与圆标记法径向变形测量结果一致。机织复合材料飞轮测试极限圆周速度为889 m/s,储能密度为63.7 Wh/kg。理论分析和实验表明,环形织构的双强化理论可行,能够获得比缠绕飞轮更高的旋转速度。 Considering radial delamination of fiber winding composite flywheel at high speed, an annular plain woven fabric with both circumferential and radial reinforcement was proposed, and the prominent feature of new texture was that the circular yarn was continuously woven by a single fiber bundle. The representative volume unit cell with "flat spindle" section was established to deal with the differences between bidirectional yarn profiles. By means of structural similarity between sectorial and rectangular unit cell, constraint conditions for isoparametric weaving were defined. The volume averaging method was used to predict effective elastic parameters for sectorial unit cell of ring fabric. Based on the idea of multi-layered segmentation of rims, the stress and deformation characteristics of woven flywheel under rotating load and correlative influencing parameters were analyzed. The theoretical displacement shows good agreement with radial deformation measurement results using circles marking method. The maximum tangential speed of woven flywheel achieves 889 m/s, and the corresponding energy density reaches 63.7 Wh/kg. Both theoretical analysis and experimental results prove that the bidirectional reinforcement theory of circular texture is practicable. And woven composite flywheel is well promising in technological process to achieve higher rotation speed than traditional winding ones. 国家重点研发项目(2018YFB0905500

References

[1]  AMROUCHE S O, REKIOUA D, REKIOUA T, et al. Overview of energy storage in renewable energy systems[J]. International Journal of Hydrogen Energy, 2016, 41(45):20914-20927.
[2]  HA S K, KIM D J, SUNG T H. Optimum design of multi-ring composite flywheel rotor using a modified generalized plane strain assumption[J]. International Journal of Mechanical Sciences, 2001, 43(4):993-1007.
[3]  秦勇, 夏源明, 毛天祥. 纤维束张紧力缠绕复合材料飞轮的预应力简化分析[J]. 复合材料学报, 2003, 20(6):87-91. QIN Yong, XIA Yuanming, MAO Tianxiang. Simplified initial stress analysis of composite flywheel in tension winding[J]. Acta Materiae Compositae Sinica, 2003, 20(6):87-91(in Chinese).
[4]  李珍, 蒋涛, 裴艳敏, 等. 复合材料储能飞轮转子研究进展[J]. 材料导报, 2013, 27(3):64-69.LI Zhen, JIANG Tao, PEI Yanmin, et al. Research progress on composite flywheel rotor for energy storage[J]. Materials Review, 2013, 27(3):64-69(in Chinese).
[5]  HIROSHIMA N, HATTA H, KOYAMA M, et al. Optimization of flywheel rotor made of three-dimensional composites[J]. Composite Structures, 2015, 131:304-311.
[6]  吴德隆, 沈怀荣. 纺织结构复合材料的力学性能[M]. 长沙:国防科技大学出版社, 1998:6.WU Delong, SHEN Huairong. Behavior of textile structural composites[M]. Changsha:National University of Defense Technology Press, 1998:6(in Chinese).
[7]  DAI X J, WANG Y, TANG C L, et al. Mechanics analysis on the composite flywheel stacked from circular twill woven fabric rings[J]. Composite Structures, 2016, 155:19-28.
[8]  李建林, 田立亭, 来小康. 能源互联网背景下的电力储能技术展望[J]. 电力系统自动化, 2015, 39(23):15-25.LI Jianlin, TIAN Liting, LAI Xiaokang. Outlook of electrical energy storage technologies under energy internet background[J]. Automation of Electric Power Systems, 2015, 39(23):15-25(in Chinese).
[9]  戴兴建, 汪勇, 沈祖培. 飞轮储能密度的理论预测与实验测试[J]. 储能科学与技术, 2014, 3(4):312-315.DAI Xingjian, WANG Yong, SHEN Zupei. Theoretical calculations and experimental validation of flywheel energy storage density[J]. Energy Storage Science and Technology, 2014, 3(4):312-315(in Chinese).
[10]  GENTA G. On the design of thick rim composite material filament wound flywheels[J]. Composites, 1984, 15(1):49-55.
[11]  KIRK J A. Flywheel energy storage-Ⅰ:Basic concepts[J]. International Journal of Mathematical Education in Science & Technology, 1977, 19(4):223-231.
[12]  GOWAYED Y, ABELHADY F, FLOWERS G T, et al. Optimal design of multi-direction composite flywheel rotors[J]. Polymer Composites, 2002, 23(3):433-441.
[13]  唐长亮, 戴兴建, 汪勇. 多层混杂复合材料飞轮力学设计与旋转试验[J]. 清华大学学报(自然科学版), 2015(3):361-367.TANG Changliang, DAI Xingjian, WANG Yong. Mechanical design and spin test of a multi-layer commingled composite flywheel[J]. Journal of Tsinghua University (Science and Technology), 2015(3):361-367(in Chinese).
[14]  ARVIN A C, BAKIS C E. Optimal design of press-fitted filament wound composite flywheel rotors[J]. Composite Structures, 2006, 72(1):47-57.
[15]  WEN S, JIANG S. Optimum design of hybrid composite multi-ring flywheel rotor based on displacement method[J]. Composites Science & Technology, 2012, 72(9):982-988.
[16]  ACEBAL R. Energy storage capabilities of rotating machines including a comparison of laminated disk and rim rotor composite designs[J]. IEEE Transactions on Magnetics, 1999, 35(1):317-322.
[17]  FABIEN B C. The influence of failure criteria on the design optimization of stacked-ply composite flywheels[J]. Structural & Multidisciplinary Optimization, 2007, 33(6):507-517.
[18]  左惟炜. 三维编织复合材料力学性能与工程应用研究[D]. 武汉:华中科技大学, 2006.ZUO Weiwei. Research on mechanical properties and engineering application of 3-D braided composites[D]. Wuhan:Huazhong University of Science & Technology, 2006(in Chinese).
[19]  唐长亮. 混杂与机织复合材料飞轮力学分析实验研究[D]. 北京:清华大学, 2013. TANG Changliang. Mechanical analysis and experimental study of commingled and woven composite flywheel[D]. Beijing:Tsinghua University, 2013(in Chinese).
[20]  HIROSHIMA N, HATTA H, NAGURA Y, et al. Spin test of three-dimensional composite rotor using polymer ring as a connection device for high-speed flywheel[J]. Mechanical Engineering Journal, 2016, 3(4):261-273.
[21]  杜善义. 先进复合材料与航空航天[J]. 复合材料学报, 2007, 24(1):1-12.DU Shanyi. Advanced composite materials and aerospace engineering[J]. Acta Materiae Compositae Sinica, 2007, 24(1):1-12(in Chinese).
[22]  KUHN J L, CHARALAMBIDES P G. Modeling of plain weave fabric composite geometry[J]. Journal of Composite Materials, 1999, 33(3):188-220.
[23]  TANG X, WHITCOMB J D, KELKAR A D, et al. Progressive failure analysis of 2×2 braided composites exhibiting multiscale heterogeneity[J]. Composites Science & Technology, 2006, 66(14):2580.
[24]  YOUNES R, HALLAL A, FARDOUN F, et al. Comparative review study on elastic properties modeling for unidirectional composite materials[M]. London:Intech Open Limited, 2012:261-290.
[25]  ELAGAMY N, LALIBERTE J. Historical development of geometrical modelling of textiles reinforcements for polymer composites:A review[J]. Journal of Industrial Textiles, 2016, 45(4):556-584.
[26]  ADUMITROAIE A, BARBERO E J. Beyond plain weave fabrics-I. Geometrical model[J]. Composite Structures, 2011, 93(5):1424-1432.
[27]  NAIK N, GANESH V. An analytical method for plain weave fabric composites[J]. Composites, 1995, 26(4):281-289.
[28]  HALLAL A, YOUNES R, FARDOUN F. Review and comparative study of analytical modeling for the elastic properties of textile composites[J]. Composites Part B:Engineering, 2013, 50(1):22.
[29]  LEE S, BYUN J, HONG S H. Effect of fiber geometry on the elastic constants of the plain woven fabric reinforced aluminum matrix composites[J]. Materials Science and Engineering:A, 2003, 347(1):346-358.
[30]  汪勇. 平纹机织复合材料飞轮的力学分析与图像测量[D]. 北京:清华大学, 2017.WANG Yong. Mechanical analysis and image measurement of plain woven composite flywheel[D]. Beijing:Tsinghua University, 2017(in Chinese).

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133