全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2019 

介孔Fe-SiO2复合材料的制备及吸附协同催化性能
Synthesis of mesoporous Fe-SiO2 composites and adsorption and synergetic catalytic performance

DOI: 10.13801/j.cnki.fhclxb.20180412.002

Keywords: 弱酸性体系,介孔Fe-SiO2,吸附,类芬顿催化,亚甲基蓝
mildly acidic media
,mesoporous Fe-SiO2,adsorption,Fenton-like catalysis,methylene blue

Full-Text   Cite this paper   Add to My Lib

Abstract:

采用原位一步合成法,在含有模板剂、AlCl3和H2O的弱酸性反应体系中,引入Si源和Fe源,通过原位共沉积的方式,成功制备出Fe修饰的介孔SiO2(Fe-SiO2)复合材料。采用XRD、N2吸附、FTIR、UV-vis、SEM和EDS等手段表征了介孔Fe-SiO2复合材料样品的结构、形貌和化学组成;将所获得的介孔Fe-SiO2复合材料用于吸附和协同催化去除水体中有机污染物亚甲基蓝(MB);考察了Fe源添加量对介孔Fe-SiO2复合材料结构和性能的影响。研究结果表明:合成体系中rFe:Si ≤ 0.05(摩尔比)时,所得Fe-SiO2介孔材料保留了介孔孔道的高度有序性和大比表面积(860~889 m2·g-1),Fe在介孔Fe-SiO2复合材料中主要以四配位骨架掺杂的形式存在;当rFe:Si=0.1时,其比表面积下降为526 m2·g-1,Fe以骨架内和骨架外氧化物的形式共存于介孔Fe-SiO2复合材料中。所有介孔Fe-SiO2复合材料在去除MB的实验中均表现出很大的吸附容量和优良的多相类芬顿催化能力。其中,rFe:Si=0.05时所获得的介孔Fe-SiO2复合材料样品性能最佳,对高浓度MB(250 mg·L-1)的吸附和催化总量达到213 mgg-1。 A series Fe-modified mesoporous SiO2 (Fe-SiO2) composites were successfully synthesized via one-step method. Fe species can be co-precipitated with the siliceous species in the mildly acidic aqueous solutions that contain the template and aluminum chloride. The structure, morphology and chemical composition of Fe-SiO2 composites were characterized by XRD, N2 physisorption, FTIR, UV-vis, SEM and EDS techniques. The obtained mesoporous Fe-SiO2 composites was then used to adsorb and synergetic catalytic degrade organic methylene blue (MB) from wastewater. The effects of the initial Fe content in the reaction solution on the structure and property of Fe-SiO2 composites were thoroughly investigated. The results show that the mesoporous Fe-SiO2 synthesized with relatively low Fe content (rFe:Si ≤ 0.05) has a well-ordered mesostructure and large surface area (860-889 m2·g-1), and Fe species are highly dispersed in the framework of the SiO2. At high Fe content (rFe:Si=0.1), the obtained mesoporous Fe-SiO2 has a reduced surface areas of 526 m2·g-1, and Fe species are existing in the matrix of SiO2 as the both framework and extra-framework forms. All of the mesoporous Fe-SiO2 composites show high adsorption capacities and the superior heterogeneous Fenton-like catalytic activities for the removal of MB from aqueous solutions. Among them, the Fe-SiO2 sample synthesized with the rFe:Si of 0.05 presents the best performance. It can remove 213 mgg-1 of high concentrated MB (250 mg·L-1) by adsorption and synergetic catalytic degradation. 国家自然科学基金(51778392;51478285);江苏省自然科学基金(BK20151198);江苏省研究生培养创新工程(KYCX17_2064);教育部资源化学国际合作联合实验室开放课题;材料化学工程国家重点实验室开放课题(KL17-06);江苏高校水处理技术与材料协同创新中心资

References

[1]  ZHU M, MENG D, WANG C, et al. Degradation of methylene blue with H2O2 over a cupric oxide nanosheet catalyst[J]. Chinese Journal of Catalysis, 2013, 34(11):2125-2129.
[2]  CAI C, ZHANG H, ZHONG X, et al. Ultrasound enhanced heterogeneous activation of peroxymonosulfate by a bimetallic Fe-Co/SBA-15 catalyst for the degradation of Orange Ⅱ in water[J]. Journal of Hazardous Materials, 2015, 283:70-79.
[3]  LIAO Q, SUN J, GAO L. Degradation of phenol by heterogeneous Fenton reaction using multi-walled carbon nanotube supported Fe2O3 catalysts[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2009, 345(1-3):95-100.
[4]  FARD A K, RHADFI T, MCKAY G, et al. Enhancing oil removal from water using ferric oxide nanoparticles doped carbon nanotubes adsorbents[J]. Chemical Engineering Journal, 2016, 293:90-101.
[5]  GREWAL J K, KAUR M, GREWAL J K, et al. Effect of core-shell reversal on the structural, magnetic and adsorptive properties of Fe2O3-GO nanocomposites[J]. Ceramics International, 2017, 43(18):16611-16621.
[6]  JIAO J, LI X, ZHANG S, et al. Redox and pH dual-responsive PEG and chitosan-conjugated hollow mesoporous silica for controlled drug release[J]. Materials Science Engineering C, 2016, 67:26-33.
[7]  HUANG R, YAN H, LI L, et al. Catalytic activity of Fe/SBA-15 for ozonation of dimethyl phthalate in aqueous solution[J]. Applied Catalysis B:Environmental, 2011, 106(1-2):264-271.
[8]  KARTHIKEYAN S, PACHAMUTHU M P, ISAACS M A, et al. Cu and Fe oxides dispersed on SBA-15:A Fenton type bimetallic catalyst for N, N-diethyl-p-phenyl diamine degradation[J]. Applied Catalysis B:Environmental, 2016, 199:323-330.
[9]  ZHANG H, TANG C, SUN C, et al. Direct synthesis, characterization and catalytic performance of bimetallic Fe-Mo-SBA-15 materials in selective catalytic reduction of NO with NH3[J]. Microporous and Mesoporous Materials, 2012, 151(11):44-55.
[10]  ZHOU L, WANG L Z, LEI J Y, et al. Well dispersed Fe2O3 nanoparticles on g-C3N4 for efficient and stable photo-Fenton photocatalysis under visible light irradition[J]. European Journal of Inorganic Chemistry, 2016, 2016(34):5387-5392.
[11]  XING Z M, GAO Y X, SHI L Y, et al. Fabrication of gold nanoparticles in confined spaces using solid-phase reduction:Significant enhancement of dispersion degree and catalytic activity[J]. Chemical Engineering Science, 2017, 158:216-226.
[12]  YIN Y, XUE D M, LIU X Q, et al. Unusual ceria dispersion formed in confined space:A stable and reusable adsorbent for aromatic sulfur capture[J]. Chemical Communications, 2012, 48(76):9495-9497.
[13]  YIN Y, TAN P, LIU X Q, et al. Constructing a confined space in silica nanopores:An ideal platform for the formation and dispersion of cuprous sites[J]. Journal of Materials Chemistry A, 2014, 2(10):3399-3406.
[14]  LI J, LI L S, XU L. Hierarchically macro/mesoporous silica sphere:A high efficient carrier for enzyme immobilization[J]. Microporous and Mesoporous Materials, 2016, 231:147-153.
[15]  SLOWING I, TREWYN B, GIRI S, et al. Mesoporous silica nanoparticles for drug delivery and biosensing applications[J]. Advanced Functional Materials, 2007, 17(8):1225-1236.
[16]  许松松, 吴正颖, 王赛, 等. 介孔SiO2/膨胀石墨复合材料的直接合成及其对染料的吸附性能[J]. 复合材料学报, 2017, 34(2):414-422. XU S S, WU Z Y, WANG S, et al. Direct synthesis of mesoporous silica/expanded graphite composites and the adsorption properties to dyes[J]. Acta Materiae Compositae Sinica, 2017, 34(2):414-422(in Chinese)
[17]  LIU H, LU G, GUO Y, et al. Study on the synthesis and the catalytic properties of Fe-HMS materials in the hydroxylation of phenol[J]. Microporous and Mesoporous Materials, 2008, 108(1-3):56-64.
[18]  BORDIGA S, BUZZONI R, GEOBALDO F, et al. Structure and reactivity of framework and extraframework iron in Fe-silicalite as investigated by spectroscopic and physicochemical methods[J]. Journal of Catalysis, 1996, 158(2):486-501.
[19]  WU Z Y, LU Q Y, FU W H, et al. Fabrication of mesoporous Al-SBA-15 as a methylene blue capturer via a spontaneous infiltration route[J]. New Journal of Chemistry, 2015, 39(2):985-993.
[20]  JIANG Y, TAN P, CHENG L, et al. Selective adsorption and efficient regeneration via smart adsorbents possessing thermo-controlled molecular switches[J]. Physical Chemistry Chemical Physics, 2016, 18(15):9883-9887.
[21]  REN S, CHEN C, ZHOU Y, et al. The α-Fe2O3/g-C3N4 composite as an efficient heterogeneous catalyst with combined Fenton and photocatalytic effects[J]. Research on Chemical Intermediates, 2016, 43(5):3307-3323.
[22]  LIU Y, LIU X, ZHAO Y, et al. Aligned α-FeOOH nanorods anchored on a graphene oxide-carbon nanotubes aerogel can serve as an effective Fenton-like oxidation catalyst[J]. Applied Catalysis B:Environmental, 2017, 213:74-86.
[23]  LIU Y, JIN W, ZHAO Y, et al. Enhanced catalytic degra-dation of methylene blue by α-Fe2O3/graphene oxide via hete-rogeneous photo-Fenton reactions[J]. Applied Catalysis B:Environmental, 2017, 206:642-652.
[24]  TONG Z, ZHENG P, BAI B, et al. Adsorption performance of methyl violet via α-Fe2O3@porous hollow carbonaceous microspheres and its effective regeneration through a Fenton-like reaction[J]. Catalysts, 2016, 6(4):58-74.
[25]  ASSADI A A. Effective heterogeneous electro-Fenton process for the degradation of a malodorous compound, indole, using iron loaded alginate beads as a reusable catalyst[J]. Applied Catalysis B:Environmental, 2016, 182:47-58.
[26]  PRADISTY N A, SIHOMBING R, HOWE R F, et al. Fe(Ⅲ) oxide-modified indonesian bentonite for catalytic photo degradation of phenol in water[J]. Makara Journal of Science, 2017, 21(1):25-33.
[27]  ZHU J, DING J J, LIU X Q, et al. Realizing both selective adsorption and efficient regeneration using adsorbents with photo-regulated molecular gates[J]. Chemical Communications, 2016, 52(21):4006-4009.
[28]  HENSEN E J M, ZHU Q, SANTEN R A V. Selective oxidation of benzene to phenol with nitrous oxide over MFI zeolites:2. On the effect of the iron and aluminum content and the preparation route[J]. Journal of Catalysis, 2005, 233(1):136-146.
[29]  NASROLLAHADEH M, SAJADI S M, HATAMIFARD A. Waste chicken eggshell as a natural valuable resource and environmentally benign support for biosynthesis of catalytically active Cu/eggshell, Fe3O4/eggshell and Cu/Fe3O4/eggshell nanocomposites[J]. Applied Catalysis B:Environmental, 2016, 191:209-227.
[30]  UDDIN M T, ISLAM M A, MAHMUD S, et al. Adsorptive removal of methylene blue by tea waste[J]. Journal of Hazardous Materials, 2009, 164(1):53-60.
[31]  MUNOZ M, PEDRO Z M D, CASAS J A, et al. Preparation of magnetite-based catalysts and their application in heterogeneous Fenton oxidation:A review[J]. Applied Catalysis B:Environmental, 2015, 176-177:249-265.
[32]  HADJLTAIEF H B, COSTA P D, BEAUNIER P, et al. Fe-clay-plate as a heterogeneous catalyst in photo-Fenton oxi-dation of phenol as probe molecule for water treatment[J]. Applied Clay Science, 2014, 91-92(15):46-54.
[33]  MACINA D, PIWOWARSKA Z, GóRA-MAREK K, et al. SBA-15 loaded with iron by various methods as catalyst for DeNOx process[J]. Materials Research Bulletin, 2016, 78:72-82.
[34]  SIDDIQUI Z N, KHAN K, AHMED N. Nano fibrous silica sulphuric acid as an efficient catalyst for the synthesis of β-enaminone[J]. Catalysis Letters, 2014, 144(4):623-632.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133