全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2019 

CuFe2O4/纳米纤维素磁性复合材料的制备及催化性能
Synthesis and catalysis properties of magnetic CuFe2O4/cellulose composites

DOI: 10.13801/j.cnki.fhclxb.20180503.002

Keywords: 纳米纤维素,CuFe2O4,4-硝基酚,催化还原,循环利用
cellulose nano crystals
,CuFe2O4,4-nitrophenol,catalysis reduction,recycling

Full-Text   Cite this paper   Add to My Lib

Abstract:

采用简单易行的一锅溶剂热法原位合成CuFe2O4/纳米纤维素(CuFe2O4/CNC)磁性复合材料,并研究CuFe2O4/CMC磁性复合材料催化剂在NaBH4作用下催化还原4-硝基酚(4-NP)性能。结果表明:所制备的CuFe2O4/CNC磁性复合材料为单一尖晶石结构,具有超顺磁性,纳米颗粒尺寸约为10 nm,其饱和磁化强度为33.15 emu&t;g-1。与CuFe2O4纳米颗粒相比,CuFe2O4/CNC磁性复合材料的比表面积提高到89.9 m2·g-1(CuFe2O4纳米颗粒的比表面积为53.9 m2·g-1)。CNC有助于改善CuFe2O4的单分散性,且对4-NP的吸附作用能加快反应的传质速率。将CuFe2O4/CNC磁性复合材料用于催化还原4-NP,反应符合一级动力学特征;当CNC的添加量为0.2 g时,可以将4-NP(100 μL,0.005 mol·L-1)溶液在25 s催化还原完全,表现出优异的反应活性。催化剂循环使用5次后,对4-NP的转化率仍能保持90%以上。 Magnetic CuFe2O4/cellulose nano crystals (CuFe2O4/CNC) composite was presented via a facile one-step solvothermal method. The catalytic reduction of 4-nitrophenol (4-NP) was tested with the addition of NaBH4. The results show that the prepared superparamagnetic CuFe2O4/CNC composite is a cubic spinel crystal structure with the nano particle size of 10 nm, presenting the saturation magnetization of 33.15 emu·g-1. Compared with CuFe2O4 nano particles, the CuFe2O4/CNC composite shows a higher specific surface area of 89.9 m2·g-1 (the specific surface area of CuFe2O4 nano particles is 53.9 m2·g-1). The CNC helps to improve the monodispersity of CuFe2O4 nano particles and absorbs 4-NP to facilitate the mass transfer rate positively. The CuFe2O4/CNC composite is conducted to catalytic reduction of 4-NP. The dynamic kinetics of the catalytic reduction is the first order process. When 0.2 g CNC is added, CuFe2O4/CNC composite can catalyze the reduction of 4-NP (100 μL, 0.005 mol·L-1) within 25 s, showing a high catalytic activity. The conversion rate of 4-NP can still reach 90% even after 5 cycles. 陕西省重大专项项目(2015KTCQ01-44);广西清洁化制浆造纸与污染控制重点实验室开放基金(KF 201711

References

[1]  ZHU M, MENG D, WANG C, et al. Facile fabrication of hierarchically porous CuFe2O4 nanospheres with enhanced capacitance property[J]. ACS Applied Material Interfaces, 2013, 5(13):6030-6037.
[2]  ZHOU Z, LU C, WU X, et al. Cellulose nanocrystals as a novel support for CuO nanoparticles catalysts:Facile synthesis and their application to 4-nitrophenol reduction[J]. RSC Advances, 2013, 3(48):26066-26073.
[3]  ZHANG D, ZHANG G, WANG Q, et al. Dual-functional catalytic materials:Magnetically hollow porous Ni-manganese oxides microspheres/cotton cellulose fiber[J]. Journal of Taiwan Institute of Chemistry Engineering, 2017, 77:311-320.
[4]  TAGHAVI F, FALAMAKI C, SHABANOV A, et al. Kinetic study of the hydrogenation of p-nitrophenol to p-aminophenol over micro-aggregates of nano-Ni2B catalyst particles[J]. Applied Catalysis A:General, 2011, 407(1):173-180.
[5]  何永珍, 周雪飞, 代朝猛, 等. 铁氧体及其复合材料去除水体中有机污染物的研究进展[J]. 材料导报, 2015, 29(5):16-19. HE Y Z, ZHOU X F, DAI C M, et al. Research progress on removal of organic pollutants in water by ferrite and its composites materials[J]. Material Review, 2015, 29(5):16-19(in Chinese).
[6]  SU L, QIN W, ZHANG H, et al. The peroxidase/catalase-like activities of MFe2O4 (M=Mg, Ni, Cu) MNPs and their application in colorimetric biosensing of glucose[J]. Biosensors and Bioelectronics, 2015, 63:384-391.
[7]  REN, Y M, LIN L Q, et al. Sulfate Radicals induced from peroxymonosulfate by magnetic ferrospinel MFe2O4 (M=Co, Cu, Mn, and Zn) as heterogeneous catalysts in the water[J]. Applied Catalysis B:Environmental, 2015, 165:572-578.
[8]  ZHANG H, ZHAO Y, LIU W, et al. Preparation of magnetically separable Cu6/7Co1/7Fe2O4-graphene catalyst and its application in selective reduction of nitroarenes[J]. Catalysis Communications, 2015, 59:161-165.
[9]  ZHAO Y, HE G, DAI W, et al. High catalytic activity in the phenol hydroxylation of magnetically separable CuFe2O4-reduced graphene oxide[J]. Industrial & Engineering Chemistry Research, 2014, 53(32):12566-12574.
[10]  ZHANG X, FENG M, QU R, et al. Catalytic degradation of diethyl phthalate in aqueous solution by persulfate activated with nano-scaled magnetic CuFe2O4/MWCNTs[J]. Chemical Engineering Journal, 2016, 301:1-11.
[11]  WU X, SHI Z, FU S, et al. Strategy for synthesizing porous cellulose nanocrystal supported metal nanocatalysts[J]. ACS Sustainable Chemistry & Engineering, 2016, 4(11):5929-5935.
[12]  REN Y, LI S, DAI B, et al. Microwave absorption properties of cobalt ferrite-modified carbonized bacterial cellulose[J]. Applied Surface Science, 2014, 311:1-4.
[13]  胡琼, 曲雯雯, 余明远, 等. 水热法制备纤维素基CdS纳米复合材料及其光催化性能研究[J]. 材料导报, 2016, 30(22):20-25. HU Q, QU W W, YU M Y, et al. Study on the preparation of cellulose based CdS nanocomposites and its photocatalytic properties by hydrothermal method[J]. Material Review, 2016, 30(22):20-25(in Chinese).
[14]  HU Z, MENG Q, LIU R, et al. Physical study of the primary and secondary photothermal events in gold/cellulose nanocrystals (AuNP/CNC) nanocomposites embedded in PVA matrices[J]. ACS Sustainable Chemistry, 2017, 5(2):1601-1609.
[15]  POLAT K, AKSU M L, PEKEL A T. Electro reduction of nitrobenzene to p-aminophenol using voltammetric and semipilot scale preparative electrolysis techniques[J]. Journal of Applied Electrochemistry, 2002, 32(2):217-223.
[16]  CHEN R, WANG Q, DU Y, et al. Effect of initial solution apparent pH on nano-sized nickel catalysts in p-nitrophenol hydrogenation[J]. Chemical Engineering Journal, 2009, 145(3):371-376.
[17]  GAZI S, ANANTHAKRISHNAN R. Metal-free-photocatalytic reduction of 4-nitrophenol by resin-supported dye under the visible irradiation[J]. Applied Catalysis B:Environmental, 2011, 105(3):317-325.
[18]  MOHAMED M M, AL-SHARIF M S. Visible light assisted reduction of 4-nitrophenol to 4-aminophenol on Ag/TiO2 photocatalysts synthesized by hybrid templates[J]. Applied Catalysis B:Environmental, 2013, 142-143:432-441.
[19]  GOYAL A, BANSAL S, SINGHAL S. Facile reduction of nitrophenols:Comparative catalytic efficiency of MFe2O4 (M=Ni, Cu, Zn) nano ferrites[J]. International Journal of Hydrogen Energy, 2014, 39(10):4895-4908.
[20]  FENG J, SU L, MA Y, et al. CuFe2O4 magnetic nanoparticles:A simple and efficient catalyst for the reduction of nitrophenol[J]. Chemical Engineering Journal, 2013, 221:16-24.
[21]  IBRAHIM I, ALI I O, SALAMA T M, et al. Synthesis of magnetically recyclable spinel ferrite (MFe2O4, M=Zn, Co, Mn) nanocrystals engineered by sol gel-hydrothermal technology:High catalytic performances for nitroarenes reduction[J]. Applied Catalysis B:Environmental, 2016, 181:389-402.
[22]  TIAN C, FU S, LUCIA L A. Magnetic Cu0. 5Co0.5Fe2O4 ferrite nanoparticles immobilized in situ on the surfaces of cellulose nanocrystals[J]. Cellulose, 2015, 22(4):2571-2587.
[23]  刘红玲, 彭俊军, 李明, 等. 玻璃固载TiO2/纳米纤维素复合薄膜的制备及其光催化性能[J]. 复合材料学报, 2013, 30(4):163-169. LIU H L, PENG J J, LI M, et al. Preparation and photocatalytic activity of TiO2/nanocrystalline cellulose catalytic composite films coating on glass[J]. Acta Materiae Compositae Sinica, 2013, 30(4):163-169(in Chinese).
[24]  袁彩霞, 罗卫华, 袁光明, 等. 增容纳米纤维素/聚乳酸复合材料的制备与性能[J]. 复合材料学报, 2016, 33(12):2718-2724. YUAN C X, LUO W H, YUAN G M, et al. Preparation and properties of compatibilized cellulose nanocrystal/poly(lactic acid) composites[J]. Acta Materiae Compositae Sinica, 2016, 33(12):2718-2724(in Chinese).
[25]  XU S, SHEN D, WU P, et al. Fabrication of water-repellent cellulose fiber coated with magnetic nanoparticles under supercritical carbon dioxide[J]. Journal of Nanoparticle Research, 2013, 15(668):1-12.
[26]  WOO H, JI W K, KIM M, et al. Au nanoparticles supported on magnetically separable Fe2O3-graphene oxide hybrid nanosheets for the catalytic reduction of 4-nitrophenol[J]. RSC Advances, 2015, 5(10):7554-7558.
[27]  DUAN B, LIU F, HE M, et al. Ag-Fe3O4 nano-composites@chitin microspheres constructed by in situ one-pot synthesis for rapid hydrogenation catalysis[J]. Green Chemistry, 2014, 16(5):2835-2845.
[28]  XIONG R, WANG Y, ZHANG X, et al. In situ growth of gold nano particles on magnetic γ-Fe2O3@cellulose nano composites:A highly active and recyclable catalyst for reduction of 4-nitrophenol[J]. RSC Advances, 2014, 4(13):6454-6462.
[29]  NASROLLAHZADEH M, BAGHERZADEH M, KARIMI H. Preparation, characterization and catalytic activity of CoFe2O4 nanoparticles as a magnetically recoverable catalyst for selective oxidation of benzyl alcohol to benzaldehyde and reduction of organic dyes[J]. Journal of Colloid and Interfaces Science, 2016, 465:271-278.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133