全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2020 

干湿循环作用对混凝土抗氯离子渗透侵蚀性能的影响
Effect of dry-wet cycling on resistance of concrete to chloride ion permeation erosion

DOI: 10.13801/j.cnki.fhclxb.20190402.005

Keywords: 干湿循环作用,氯离子侵蚀,纳米改性矿物掺合料,微孔结构,Friedel盐,混凝土
dry-wet cycling
,chloride ion erosion,nano-modified mineral admixture,microstructure,Freidel salt,concrete

Full-Text   Cite this paper   Add to My Lib

Abstract:

为了加速模拟海洋潮差区环境对混凝土耐久性能的影响,掺入矿粉和纳米改性矿物掺合料,研究了氯盐干湿循环作用对混凝土抗氯离子侵蚀性能及微观结构的影响,并将干湿循环试验与常规浸泡试验进行了对比。结果发现,干湿循环作用粗化了混凝土试件表层孔结构,增大了孔径>50 nm的孔隙含量,显著提高了自由及总氯离子浓度;掺入纳米改性矿物掺合料能降低混凝土内部孔隙率,减少有害孔含量,提高混凝土内部氯离子结合能力;干湿循环60天后混凝土表层Ca(OH)2逐渐被消耗,生成了Friedel盐和CaCO3。 In order to accelerate the impact of simulated marine tidal zone environment on the durability of concrete, the mineral powder and nano modified mineral admixture were added, and the effect of dry-wet cycling of NaCl on the resistance to chloride ion erosion and microstructure of concrete was studied, which was compared with the immersion test. The results show that the dry-wet cycling coarsens the pore structure of the concrete surface, increases the pore content of pore size larger than 50 nm and significantly increases the free and total chloride ion concentration; the incorporation of nano-modified mineral admixture can reduce the internal porosity of concrete and the harmful pore content, while can improve the chloride ion binding capacity of concrete. After 60 days of wet and dry cycling, the Ca(OH)2 on the surface layer is gradually consumed, and the Friedel salt and CaCO3 are formed. 浙江省重点研发计划项目(2017C01052);国家自然科学基金(51809233);浙江省自然科学基金(LQ18E090001

References

[1]  曹卫群. 干湿交替环境下混凝土的氯离子侵蚀与耐久性防护[D]. 西安:西安建筑科技大学, 2013.CAO W Q. Chloride transport and cover protection of concrete under drying-wetting cycles[D]. Xi'an:Xi'an University of Architecture and Technology, 2013(in Chinese).
[2]  LEA F M. The chemistry of cement and concrete (Third edition)[M]. London:Edward Arnold (Publishers) Ltd, 1970.
[3]  STEPKOWSKA E T, AVILES M A, BLANES J M, et al. Gradual transformation of Ca(OH)2 into CaCO3 on cement hydration[J]. Journal of Thermal Analysis and Calorimetry, 2007, 87(1):189-198.
[4]  柳俊哲, 闫加利, 巴明芳, 等. 碳化对水泥混凝土内氯离子分布的影响[J]. 建筑材料学报, 2015, 18(1):113-117.LIU J Z, YAN J L, BA M F, et al. Effects of carbonation on chloride ion distribution in hardened cement concrete[J]. Journal of Building Materials, 2015, 18(1):113-117(in Chinese).
[5]  ZHU Q, JIANG L, CHEN Y, et al. Effect of chloride salt type on chloride binding behavior of concrete[J]. Construction & Building Materials, 2012, 37:512-517.
[6]  段付珍. 干湿循环机制下混凝土氯离子侵蚀试验研究[D]. 西安:西安建筑科技大学, 2011.DUAN F Z. Experiment research on chloride ion erosion of concrete under the mechanism of wet and dry cycles[D]. Xi'an:Xi'an University of Architecture and Technology, 2011(in Chinese).
[7]  DHIR R K, EL-MOHR M A K, DYER T D. Chloride binding in GGBS concrete[J]. Cement & Concrete Research, 1996, 26(12):1767-1773.
[8]  PANE I, HANSEN W. Investigation of blended cement hydration by isothermal calorimetry and thermal analysis[J]. Cement & Concrete Research, 2005, 35(6):1155-1164.
[9]  RAMACHANDRAN V S, PAROLI R M, BEAUDOIN J J, et al. Handbook of thermal analysis of construction materials[M]. New York:William Andrew, 2002.
[10]  ZAITSEV J W, WITTMANN F H. Crack propagation in a two-phase material such as concrete[J]. Applications and Non-metals, 1978:1197-1203.
[11]  VAL D V, STEWART M G. Life-cycle cost analysis of reinforced concrete structures in marine environments[J]. Structural Safety, 2003, 25(4):343-362.
[12]  KINOSHITA H, CIRCHIRILLO C, SANMARTIN I, et al. Carbonation of composite cements with high mineral admixture content used for radioactive waste encapsulation[J]. Minerals Engineering, 2014, 59:107-114.
[13]  ZHANG D, SHAO Y. Effect of early carbonation curing on chloride penetration and weathering carbonation in concrete[J]. Construction & Building Materials, 2016, 123:516-526.
[14]  WANG Y Z, WANG L J, WANG Y C, et al. Effects of coarse aggregates on chloride diffusion coefficients of concrete and interfacial transition zone under experimental drying-wetting cycles[J]. Construction and Building Materials, 2018, 185:230-245.
[15]  后奕锟. 室内加速试验和海洋暴露条件下的配筋混凝土损伤劣化规律研究[D]. 南京:东南大学, 2013.HOU Y K. Durability of concrete under the corrosion of indoor acceleration testing and marine environment[D]. Nanjing:Southeast University, 2013(in Chinese).
[16]  李隽, 高培伟, 刘宏伟, 等. 混凝土在浸泡和干湿循环作用下的抗氯盐侵蚀性能[J]. 南京理工大学学报(自然科学版), 2017, 41(5):666-670.LI X, GAO P W, LIU H W, et al. Study on concrete resistance to chloride salt corrosion under full soaking and dry-wet cycling condition[J]. Journal of Nanjing University of Science and Technology (Natural Science), 2017, 41(5):666-670(in Chinese).
[17]  杨益, 宁翠萍, 苟胜荣, 等. 粉煤灰再生混凝土氯离子渗透性能影响因素研究[J]. 粉煤灰综合利用, 2017(3):19-22.YANG Y, NING C P, GOU S R, et al. Study on influencing factors of chloride ion permeability of fly ash recycled concrete[J]. Fly Ash Comprehensive Utilization, 2017(3):19-22(in Chinese).
[18]  徐世烺, 蔡新华. 超高韧性水泥基复合材料碳化与渗透性能试验研究[J]. 复合材料学报, 2010, 27(3):177-183.XU S L, CAI X H. Experimental studies on permeability and carbonation properties of ultra high toughness cementitous composites[J]. Acta Materiae Compositae Sinica, 2010, 27(3):177-183(in Chinese).
[19]  宋鲁光, 孙伟, 高建明. 干湿循环条件下矿渣混凝土氯离子表观扩散系数的影响因素研究[J]. 混凝土, 2015(11):4-6.SONG L G, SUN W, GAO J M. Factors influencing chloride apparent diffusion coefficient in GGBS concrete in wetting-drying cycles[J]. Concrete, 2015(11):4-6(in Chinese).
[20]  THOMAS M D A, HOOTON R D, SCOTT A, et al. The effect of supplementary cementitious materials on chloride binding in hardened cement paste[J]. Cement and Concrete Research, 2012, 42(1):1-7.
[21]  李永强, 巴明芳, 柳俊哲, 等. 干湿循环作用下水泥基复合材料抗氯离子侵蚀性能及其微观结构变化[J]. 复合材料学报, 2017, 34(12):2856-2865.LI Y Q, BA M F, LIU J Z, et al. Resistance to chloride erosion of cement matrix composite materials under dry-wet cycling and its micro-structural changes[J]. Acta Materiae Composite Sinica, 2017, 34(12):2856-2865(in Chinese).
[22]  廉慧珍. 建筑材料物相研究基础[M]. 北京:清华大学出版社, 1996.LIAN H Z. Research foundation of building material phase[M]. Beijing:Tsinghua University Press, 1996(in Chinese).
[23]  NAGATAKI S, OTSUKI N, WEE T H, et al. Condensation of chloride ion in hardened cement matrix materials and on embedded steel bars[J]. ACI Materials Journal, 1993, 90(4):323-332.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133