|
- 2019
相对冲击位置和补片层数对胶接修理CFRP复合材料层合板抗冲击性能的影响
|
Abstract:
本文针对碳纤维增强聚合物(CFRP)复合材料修补结构,基于连续损伤力学和粘结单元模型,在ABAQUS软件中对低速冲击载荷下不同冲击位置和补片层数的CFRP复合材料层合板内部和层间损伤进行了数值分析,并与试验结果进行了对比。选择相对冲击位置为0 mm、10 mm、20 mm、30 mm和40 mm时对应的五种修补结构,通过数值计算和试验,获得了修补结构在低速冲击过程中的冲击力、冲击能量等数据。在保持补片单层厚度不变的前提下,使补片层数从1层增加到5层,计算获得了修补结构的低速冲击响应。研究结果表明:冲头接触修补结构时会对补片造成较大的损伤,补片可以提高含孔损伤母板的抗冲击性能;冲击点离修补结构损伤孔越近,结构受冲击所产生的分层损伤越严重;增加补片的层数可以提高修补结构的抗冲击性能;通过对补片层数进行优化,得到优化层数为2,其对应的修补结构与无修补结构相比分层损伤面积减少了19.9%,较好地提升了母板的抗冲击性能。 In this paper, based on continuous damage mechanics and cohesive element model, the internal and interlaminar damage of carbon fiber reinforced polymer (CFRP) composite laminates with different impact locations and patch layers under low velocity impact load were numerically analyzed in ABAQUS, and the results were compared with the experimental results. Five kinds of repaired structures corresponding to the relative impact location of 0 mm, 10 mm, 20 mm, 30 mm and 40 mm were selected. The impact force and impact energy of the repaired structure during the low velocity impact were obtained from numerical and experimental approach. By keeping the monolayer thickness unchanged, the layer number of the used patches increased from 1 layer to 5 layers, and the low velocity impact response of repaired structures was obtained numerically and experimentally. The results show that when the impactor contacts repaired structures, it causes damage to the patch, but the patch definitely improves the impact resistance of the damaged parent laminates. When the impact point is closer to the damage hole of the repaired structure, the more serious the damage of the structure is caused by the impact. Moreover, the increase of the layer number within the patch design improves the impact resistance of the repaired structure. An optimum layer number is 2 obtained by optimizing the layer number, and the corresponding delamination area is reduced by 19.9% compared with damaged parent laminate without repair. 国家自然科学基金民航联合基金重点项目(U1333201);国家博士后科学基金面上资助项目(2016M602256
[1] | ABRATE S. Impact on composite structures[M]. New York:Cambridge University Press, 2005. |
[2] | SHAMS S S, EL-HAJJAR R F. Overlay patch repair of scratch damage in carbon fiber/epoxy laminated composites[J]. Composites Part A:Applied Science & Manufacturing, 2013, 49(49):148-156. |
[3] | 相超, 周丽, 宋恩鹏, 等. 拉伸载荷下贴补复合材料层合板的渐进损伤分析[J]. 工程力学, 2014, 31(10):234-241. XIANG C, ZHOU L, SONG E P, et al. Progressive damage analysis of bonding patch-repaired composite laminates under tension loading[J]. Engineering Mechanics, 2014, 31(10):234-241(in Chinese). |
[4] | 郭凯特, 谢宗蕻, 李想, 等. 复合材料双面贴补修理拉伸解析分析模型及试验验证[J]. 复合材料学报, 2017, 34(10):2194-2204. GUO K T, XIE Z H, LI X, et al. An analytical model and its validation for a composite double lap joints under unidirectional tension[J]. Acta Materiae Compositae Sinica, 2017, 34(10):2194-2204(in Chinese). |
[5] | HU F Z, SOUTIS C. Strength prediction of patch-repaired CFRP laminates loaded in compression[J]. Composites Science & Technology, 2000, 60(7):1103-1114. |
[6] | ANDREW J J, SRINIVASAN S M, AROCKIARAJAN A. The role of adhesively bonded super hybrid external patches on the impact and post-impact response of repaired glass/epoxy composite laminates[J]. Composite Structures, 2018, 84:848-859. |
[7] | 张龙, 胡殿印, 贾傲, 等. 基于超弹性特性的SMA复合材料层合板低速冲击损伤数值模拟方法[J]. 复合材料学报, 2017, 34(2):364-373. ZHANG L, HU D Y, JIA A, et al. Numerical simulation of low velocity impact damage behavior of composite laminates based on SMA superelasticity[J]. Acta Materiae Compositae Sinica, 2017, 34(2):364-373(in Chinese). |
[8] | ASTM International. Standard test method for measuring the damage resistance of a fiber-reinforced polymer matrix composite to a drop-weight impact event:ASTM D7136M-07[S]. West Conshohocken:ASTM International, 2007. |
[9] | CHENG X Q, BAIG Y, HU R W, et al. Study of tensile failure mechanisms in scarf repaired CFRP laminates[J]. International Journal of Adhesion and Adhesives, 2013, 41:177-185. |
[10] | 苗学周, 李成, 铁瑛, 等. 补片形状和尺寸对复合材料胶接修补的影响[J]. 机械工程学报, 2014, 50(20):63-69. MIAO X Z, LI C, TIE Y, et al. Influence of patch shape and size on adhesively bonded composite repair[J]. Journal of Mechanical Engineering, 2014, 50(20):63-69(in Chinese). |
[11] | BHISE V S, KASHFUDDOJA M, RAMJI M. Optimization of circular composite patch reinforcement on damaged carbon fiber reinforced polymer laminate involving both mechanics-based and genetic algorithm in conjunction with 3D finite element analysis[J]. Journal of Composite Materials, 2014, 48(22):2679-2695. |
[12] | 朱书华, 王跃全, 童明波. 复合材料层合板阶梯形挖补胶接修理渐进损伤分析[J]. 复合材料学报, 2012, 29(6):164-169. ZHU S H, WANG Y Q, TONG M B. Progressive damage analysis on composite laminates stepped-patch adhesively bonding repair[J]. Acta Materiae Compositae Sinica, 2012, 29(6):164-169(in Chinese). |
[13] | 鲍宏琛, 刘广彦. 准各向同性纤维增强复合材料层合板的开孔拉伸破坏模拟[J]. 复合材料学报, 2016, 33(5):1026-1032. BAO H C, LIU G Y. Simulation on damage in quasi-isotropic fiber-reinforced composite laminates under open-hole tension[J]. Acta Materiae Compositae Sinica, 2016, 33(5):1026-1032(in Chinese). |
[14] | 喻梅, 许希武. 复合材料挖补修理结构的压缩强度分析[J]. 中国矿业大学学报, 2008, 37(5):709-714. YU M, XU X W. Study of the compression strength of scarf patch repaired composite structures[J]. Journal of China University of Mining & Technology, 2008, 37(5):709-714(in Chinese). |
[15] | WANG L, ZHOU W L, SHI X G. Analysis of patch bonded repair to carbon fiber composite laminates with low velocity impact damage[J]. Advanced Materials Research, 2011, 335-336:226-229. |
[16] | COELHO S R M, REIS P N B, FERREIRA J A M, et al. Effects of external patch configuration on repaired composite laminates subjected to multi-impacts[J]. Composite Structures, 2017, 168:259-265. |
[17] | CHENG X, ZHANG J, BAO J, et al. Low-velocity impact performance and effect factor analysis of scarf-repaired composite laminates[J]. International Journal of Impact Engineering, 2017, 111:85-93. |
[18] | TIE Y, HOU Y L, LI C. An insight into the low-velocity impact behavior of patch-repaired CFRP laminates using numerical and experimental approaches[J]. Composite Structures, 2018, 190:179-188. |
[19] | LIU S, CHENG X, ZHANG Q, et al. An investigation of hygrothermal effects on adhesive materials and double lap shear joints of CFRP composite laminates[J]. Composites Part B:Engineering, 2016, 91:431-440. |
[20] | ABAQUS Inc. ABAQUS analysis user's manual 6.12[EB/OL]. Dassault Simulia, 2012. |