全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2019 

不同铺层方式下连续玻璃纤维/聚丙烯复合材料波纹夹芯板的力学性能
Mechanical properties of continuous glass fiber/polypropylene corrugated sandwich boards under different laminates

DOI: 10.13801/j.cnki.fhclxb.20180724.002

Keywords: 波纹夹芯板,铺层方式,玻璃纤维/聚丙烯,复合材料,滚压法,力学性能
corrugated sandwich panel
,ply sequences,glass fiber reinforced polypropylene,composites,rolling method,mechanical properties

Full-Text   Cite this paper   Add to My Lib

Abstract:

制备了多种铺层方式的连续玻璃纤维/聚丙烯(GF/PP)复合材料波纹夹芯板,并研究了GF/PP复合材料波纹夹芯板的平压性能和弯曲性能。结果显示:面板相同时,增加芯板厚度可大大增加夹芯板整体的平压性能;芯板相同时,面板的铺层方式对夹芯板的平压性能有一定影响,且面板含有0°和90°铺层的波纹夹芯板具有最高的平压模量,为59.55 MPa,而单纯增加面板厚度对提升波纹夹芯板的平压性能影响不大;面板铺层方式对弯曲性能具有较大影响,面板为0°铺层的波纹夹芯板具有最高的横向弯曲模量,为783.66 MPa,面板为90°铺层的波纹夹芯板具有最高的纵向弯曲模量,为732.09 MPa;面板为单向铺层(0°或90°铺层)时,会使夹芯板另一方向(纵向或横向)的弯曲性能形成短板。 Continuous glass fiber/polypropylene (GF/PP) composite corrugated sandwich panels with different laminates were prepared in this paper. The effects of different panels and core materials on the mechanical properties of corrugated sandwich panels were studied, including flat compression and bending properties. The results show that under the same panel, increase the thickness of the core board can greatly increase the overall flat-pressure performance of the sandwich panel. Under the same board, the method of laminating the panel has certain influence on the flat pressure performance of the sandwich panel. The corrugated sandwich panel with 0° and 90° layers has the highest flatwise compression modulus of 59.55 MPa, while the overall flatwise compression properties of those panels with the same layers cannot be increased significantly by only increasing panel thickness. The panel lay-up method has a great influence on the bending performance. The corrugated sandwich plates with 0° outer layer have the highest transverse bending modulus of 783.66 MPa, while the corrugated sandwich plate with 90° outer layer have the highest longitudinal flexural modulus of 732.09 MPa. However, for the panels with the single layers(0° or 90° layers), the bending property along a certain direction of sandwich panel will be a short board. 国家自然科学基金委科学技术产业化项目(U1664250);国家重点研究发展计划(2016YFB0101606);国防基础科研计划(A0520131001);中国航天科技集团第一研究院项目(2017AV33675

References

[1]  YANG Z G, ZHAO B, QIN S L, et al. Study on the mechanical properties of hybrid reinforced rigid polyurethane composite foam[J]. Journal of Applied Polymer Science, 2004, 92(3):1493-1500.
[2]  MAMALIS A G, MANOLAKOS D E, IOANNIDIS M B, et al. Static axial collapse of foam-filled steel thin-walled rectangular tubes:Experimental and numerical simulation[J]. International Journal of Crashworthiness, 2008, 13(2):117-126.
[3]  RAO S, JAYARAMAN K, BHATTACHARYYA D. Short fibre reinforced cores and their sandwich panels:Processing and evaluation[J]. Composites Part A, 2011, 42(9):1236-1246.
[4]  FISCHER S, DRECHSLER K, KILCHERT S, et al. Mechanical tests for foldcore base material properties[J]. Composites Part A:Applied Science & Manufacturing, 2009, 40(12):1941-1952.
[5]  XIONG J, MA L, WU L, et al. Mechanical behavior and failure of composite pyramidal truss core sandwich columns[J]. Composites Part B:Engineering, 2011, 42(4):938-945.
[6]  YIN S, WU L, NUTT S. Stretch-bend-hybrid hierarchical composite pyramidal lattice cores[J]. Composite Structures, 2013, 98(3):153-159.
[7]  YANG J S, XIONG J, MA L, et al. Modal response of all-composite corrugated sandwich cylindrical shells[J]. Composites Science & Technology, 2015, 115:9-20.
[8]  MAGNUCKA-BLANDZI E, WALCZAK Z, WITTENBECK L, et al. Stability and vibrations of a metal seven-layer rectangular plate with trapezoidal corrugated cores[J]. Thin-Walled Structures, 2017, 114:154-163.
[9]  TEHRANI M, DEZFULI F H, ALAM M S, et al. Parametric study on mechanical responses of corrugated-core sandwich panels for bridge decks[J]. Journal of Bridge Engineering, 2017, 22(5):04017002.
[10]  LU T J, HUTCHINSON J W, EVANS A G. Optimal design of a flexural actuator[J]. Journal of the Mechanics & Physics of Solids, 2001, 49(9):2071-2093.
[11]  FAN H L, MENG F H, YANG W. Sandwich panels with Kagome lattice cores reinforced by carbon fibers[J]. Composite Structures, 2008, 81(4):533-539.
[12]  HE L, CHENG Y S, LIU J. Precise bending stress analysis of corrugated-core, honeycomb-core and X-core sandwich panels[J]. Composite Structures, 2012, 94(5):1656-1668.
[13]  COTE F, DESHPANDE V S, FLECK N A, et al. The compressive and shear responses of corrugated and diamond lattice materials[J]. International Journal of Solids & Structures, 2006, 43(20):6220-6242.
[14]  SCHNEIDER C, KAZEMAHVAZI S, ZENKERT D, et al. Dynamic compression response of self-reinforced poly(ethylene terephthalate) composites and corrugated sandwich cores[J]. Composites Part A:Applied Science & Manufacturing, 2015, 77:96-105.
[15]  WEI K, PENG Y, QU Z, et al. High temperature mechanical behaviors of lightweight ceramic corrugated core sandwich panel[J]. Composite Structures, 2017, 176:379-387.
[16]  ASTM International. Standard test method for tensile properties of polymer matrix composite materials:ASTM D3039M-17[S]. West Conshohocken:ASTM International, 2017.
[17]  ASTM International. Standard test method for compressive properties of polymer matrix composite materials using a combined loading compression (CLC) test fixture:ASTM D6641M-16[S]. West Conshohocken:ASTM International, 2016.
[18]  吴林志, 泮世东. 夹芯结构的设计及制备现状[J]. 中国材料进展, 2009, 28(4):40-45. WU L Z, PAN S D. Survey of design and manufacturing of sandwich structures[J]. Materials China, 2009, 28(4):40-45(in Chinese).
[19]  李国忠. 玻璃纤维增强硬质聚氨酯泡沫塑料的微观结构及破坏机理研究[J]. 复合材料学报, 1996, 13(2):17-21. LI G Z. Research of the micro-structure and destructive mechanism of the rigid polyurethane foam-plastics reinforced by glass fibers[J]. Acta Materiae Compositae Sinica, 1996, 13(2):17-21(in Chinese).
[20]  MAHMOUDABADI M Z, SADIGHI M. A theoretical and experimental study on metal hexagonal honeycomb crushing under quasi-static and low velocity impact loading[J]. Materials Science & Engineering A, 2011, 528(15):4958-4966.
[21]  HEIMBS S, MIDDENDORF P, KILCHERT S, et al. Experimental and numerical analysis of composite folded sandwich core structures under compression[J]. Applied Composite Materials, 2007, 14(5-6):363-377.
[22]  UDDIN A S M I, CHUNG G S. Wide-ranging impact-competent self-powered active sensor using a stacked corrugated-core sandwich-structured robust triboelectric nanogenerator[J]. Sensors & Actuators B:Chemical, 2017, 245:1-10.
[23]  YOKOZEKI T, TAKEDA S I, OGASAWARA T, et al. Mechanical properties of corrugated composites for candidate materials of flexible wing structures[J]. Composites Part A:Applied Science & Manufacturing, 2006, 37(10):1578-1586.
[24]  ZHANG J, SUPERNAK P, MUELLER-ALANDER S, et al. Improving the bending strength and energy absorption of corrugated sandwich composite structure[J]. Materials & Design, 2013, 52(24):767-773.
[25]  REJAB M R M, CANTWELL W J. The mechanical behaviour of corrugated-core sandwich panels[J]. Composites Part B:Engineering, 2013, 47(3):267-277.
[26]  ASTM International. Standard test method for hydrolyzable chloride in peroxy esters and peroxy dicarbonates:ASTM D5318-97[S]. West Conshohocken:ASTM International, 1997.
[27]  ASTM International. Standard Test method for flatwise compressive properties of sandwich cores:ASTM C365M-16[S]. West Conshohocken:ASTM International, 2016.
[28]  ASTM International. Standard test method for core shear properties of sandwich constructions by beam flexure:ASTM C393M-16[S]. West Conshohocken:ASTM International, 2016.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133