|
- 2019
一步水热合成Sm3+-SrTiO3/TiO2复合纳米纤维及可见光催化性能
|
Abstract:
以电纺TiO2纳米纤维为基体和反应物,通过一步水热法,将SrTiO3原位构筑在TiO2纳米纤维表面的同时将稀土Sm3+掺入SrTiO3中,合成了Sm3+-SrTiO3/TiO2复合纳米纤维光催化材料.利用XRD、XPS、FESEM和HRTEM等测试手段对样品进行了表征.以罗丹明B和对氯苯酚模拟有机污染物进行光催化降解.结果表明:稀土Sm3+掺杂进入SrTiO3晶格取代Sr2+,在SrTiO3禁带内形成杂质能级,拓宽了光谱响应范围;同时在SrTiO3晶格内引入了缺陷位,成为电子的捕获中心,降低了载流子的复合几率;而SrTiO3与TiO2复合形成异质结,进一步提高了光生电子-空穴的分离程度,Sm3+-SrTiO3/TiO2复合纳米纤维表现出良好的可见光催化活性。 A novel Sm3+-SrTiO3/TiO2 composite nanofibers were synthesized by one-step hydrothermal technique. By this way, TiO2 nanofibers could serve as the both substrate and reactant. Moreover, not only doping of Sm3+ into SrTiO3 but also in-situ growth of SrTiO3 on skeleton of TiO2 could be simultaneously satisfied. The as-synthesized Sm3+-SrTiO3/TiO2 composite nanofibers were characterized by XRD, XPS, FESEM and HRTEM. The photocatalytic activity was evaluated by the degradation of rhodamine B and p-chloro phenol. The results show that rare earth Sm3+ ions are doped into the SrTiO3 lattice and replace Sr2+ in SrTiO3, forming an impurity level in forbidden band. The range of the light absorption by SrTiO3 is enlarged. Meanwhile, the defects are introduced into SrTiO3 lattice, acting as trapping cites of photogenerated electrons and hence reducing the recombination of charge carrier. The additionally, the heterojunction between SrTiO3 and TiO2 is beneficial for the electronic-hole separation. With these regards, Sm3+ doped SrTiO3/TiO2 composite nanofibers exhibit highly photocatalytic activity under visible light. 国家自然科学基金(21573003);吉林省自然科学基金(20140101118JC
[1] | DAGHRIR R, DROGUI P, ROBERT D. Modified TiO2 for environmental photocatalytic applications:A review[J]. Industrial & Engineering Chemistry Research, 2013, 52(10):3581-3599. |
[2] | FUJISHIMA A, HONDA K. Electrochemical photolysis of water at a semiconductor electrode[J]. Nature, 1972, 238(5358):37-38. |
[3] | CAO T P, LI Y J, SHAO C L, et al. Fabrication, structure, and enhanced photocatalytic properties of hierarchical CeO2 nanostructures/TiO2 nanofibers heterostructures[J]. Materials Research Bulletin, 2010, 45(10):1406-1412. |
[4] | CAI Z Y, XIONG Z G, LU X M, et al. In situ gold-loaded titania photonic crystals with enhanced photocatalytic activity[J]. Journal of Materials Chemistry A, 2014, 2(2):545-552. |
[5] | ZHOU J, YIN L, ZHA K, et al. Hierarchical fabrication of heterojunctioned SrTiO3/TiO2 nanotubes on 3D microporous Ti substrate with enhanced photocatalytic activity and adhesive strength[J]. Applied Surface Science, 2016, 367(30):118-125. |
[6] | YU H, OUYANG S X, YAN S, et al. Sol-gel hydrothermal synthesis of visible light driven Cr doped SrTiO3 for efficient hydrogen production[J]. Journal of Materials Chemistry, 2011, 21(30):11347-11351. |
[7] | WU G L, LI P, XU D B, et al. Hydrothermal synthesis and visible-light-driven photocatalytic degradation for tetracycline of Mn-doped SrTiO3 nanocubes[J]. Applied Surface Science, 2015, 333:39-47. |
[8] | ZHENG J Q, ZHU Y J, XU J S, et al. Microwave-assisted rapid synthesis and photocatalytic activity of mesoporous Nd-doped SrTiO3 nanospheres and nanoplates[J]. Materials Letters, 2013, 100:62-65. |
[9] | ZHANG J, TANG C C, BANG J H. CdS/TiO2-SrTiO3 heterostructure nanotube arrays for improved solar energy conversion efficiency[J]. Electrochemistry Communications, 2010, 12(8):1124-1128. |
[10] | YANG S F, NIU C G, HUANG D W, et al. SrTiO3 nanocubes decorated with Ag/AgCl nanoparticles as photocatalysts with enhanced visible-light photocatalytic activity towards the degradation of dyes, phenol and bisphenol A[J]. Environmental Science:Nano, 2017, 4(3):585-595. |
[11] | ZHANG N, CIRIMINNA R, PAGLIARO M, et al. Nanochemistry-derived Bi2WO6 nanostructures:Towards production of sustainable chemicals and fuels induced by visible light[J]. Chemical Society Reviews, 2014, 43(15):5276-5287. |
[12] | MIYAUCHI M, TAKASHIO M, TOBIMATSU H. Photocatalyic activity of SrTiO3 codoped with nitrogen and lanthanum under visible light illumination[J]. Langmuir, 2004, 20(1):232-236. |
[13] | 郭勤, 黄冬根, 熊伟, 等. 电化学制备石墨烯/纳米TiO2复合材料及光催化性能[J]. 复合材料学报, 2018, 35(1):142-149. GUO Q, HUANG D G, XIONG W, et al. Electrochemical preparation and photocatalytic performance of graphene/nano TiO2 composites[J]. Acta Materiae Compositae Sinica, 2018, 35(1):142-149(in Chinese). |
[14] | SOMORJAI G A, FREI H, PARK J Y. Advancing the frontiers in nanocatalysis, biointerfaces, and renewable energy conversion by innovations of surface techniques[J]. Journal of the American Chemical Society, 2009, 131(46):16589-16605. |
[15] | 刘刚, 韩立娟, 陈作雁, 等. V-N共掺杂TiO2/玻璃珠光催化复合材料的制备及光催化性能[J].复合材料学报, 2017, 34(5):1062-1068. LIU G, HAN L J, CHEN Z Y, et al. Preparation and photocatalytic properties of V-N co-doped TiO2/glass beads photocatalytic composite[J]. Acta Materiae Compositae Sinica, 2017, 34(5):1062-1068(in Chinese). |
[16] | GAO X F, LI H B, SUN W T, et al. CdTe quantum dots-sensitized TiO2 nanotube array photoelictrodes[J]. The Journal of Physical Chemistry C, 2009, 113(16):7531-7535. |
[17] | YANG L X, LUO S L, LIU R H, et al. Fabrication of CdSe nanoparticles sensitized long TiO2 nanotube arrays for photocatalytic degradation of anthracene-9-carbonxylic acid under green monochromatic light[J]. The Journal of Physical Chemistry C, 2010, 114(11):4783-4789. |
[18] | CAO T P, LI Y J, SHAO C L, et al. A facile in situ hydrothermal method to SrTiO3/TiO2 nanofiber heterostructures with high photocatalytic activity[J]. Langmuir, 2011, 27(6):2946-2952. |
[19] | LI X, ZHAO H L, GAO F, et al. La and Sc co-doped SrTiO3 as novel anode materials for solid oxide fuel cells[J]. Electrochemistry Communications, 2008, 10(10):1567-1570. |
[20] | JIA A, SU Z, LOU L L, et al. Synthesis and characterization of highly-active nickel and lanthanum Co doped SrTiO3[J]. Solid State Sciences, 2010, 12(7):1140-1145. |
[21] | GUO R Q, FANG L, DONG W, et al. Enhanced photocatalytic activity and ferromagnetism in Gd doped BiFeO3 nanoparticles[J]. Journal of Physical Chemistry C, 2010, 114(49):21390-21396. |
[22] | ZHU Y F, XU L, HU J, et al. Fabrication of heterostructured SrTiO3/TiO2 nanotube array films and their use in photocathodic protection of stainless steel[J]. Electrochimica Acta, 2014, 121:361-368. |
[23] | ISHIKAWA A, TAKATA T, KONDO J N, et al. Oxysulfide Sm2Ti2S2O5 as a stable photocatalyst for water oxidation and reduction under visible light irradiation (λ ≤ 650 nm)[J]. Journal of the American Chemical Society, 2002, 124(45):13547-13553. |
[24] | 潘明初, 王燕南, 徐海泉, 等. 大比表面积钛黑颜料的制备和表征[J]. 无机化学学报, 2013, 29(7):1345-1354. PAN M C, WANG Y N, XU H Q, et al. Preparation and characterizarion of black titanium oxides oxides with large surface area[J]. Chinese Journal of Inorganic Chemistry, 2013, 29(7):1345-1354(in Chinese). |
[25] | PEI L Z, LIU H D, LIN N, et al. Hydrothermal synthesis of cerium titanate nanorods and its application in visible light photocatalysis[J]. Materials Research Bulletin, 2015, 61:40-46. |