全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2019 

超声辅助制备β-磷酸三钙/Mg-Zn-Ca生物复合材料及性能
Ultrasonic aided fabrication and properties of β-tricalcium phosphate/Mg-Zn-Ca biocomposites

DOI: 10.13801/j.cnki.fhclxb.20181212.001

Keywords: 超声处理,β-磷酸三钙,Mg-Zn-Ca,复合材料,显微组织,力学性能,腐蚀行为
ultrasonic treatment
,β-tricalcium phosphate,Mg-Zn-Ca,composite,microstructure,mechanical properties,corrosion behavior

Full-Text   Cite this paper   Add to My Lib

Abstract:

在生物Mg合金基体中添加β-磷酸三钙(β-TCP)颗粒可以调控其力学性能及腐蚀降解性能,满足人体不同植入部位的服役需求。本研究在机械搅拌铸造的基础上,采用超声方法对Mg基复合材料的熔体进行辅助处理,制备了β-TCP添加量为1%(质量比)、Zn含量为3%(质量比)、Ca含量为0.2%(质量比)的β-TCP/Mg-Zn-Ca可降解生物复合材料,对超声处理制备的β-TCP/Mg-Zn-Ca复合材料的显微组织、力学性能和腐蚀行为与未超声处理制备的β-TCP/Mg-Zn-Ca复合材料进行了对比研究。结果表明:超声处理可以细化β-TCP/Mg-Zn-Ca复合材料的显微组织,有利于β-TCP复合颗粒的均匀分散;β-TCP/Mg-Zn-Ca复合材料在模拟体液环境下的耐蚀性得到提高;其屈服强度、抗拉强度和伸长率分别为211.54 MPa、334.32 MPa和7.28%,与未超声处理的β-TCP/Mg-Zn-Ca复合材料相比,分别提高了8.44%、4.67%和17.99%。 By introducing β-tricalcium phosphate (β-TCP) particles into the magnesium matrix alloy, the mechanical and corrosion degradation properties of the composite could be adjusted to meet the service requirements of different implantation sites. In this study, on the basis of mechanical stirring casting, the melt of Mg matrix composite was assisted by ultrasonic treatment, and the β-TCP/Mg-Zn-Ca biodegradable composite was prepared with the β-TCP content of 1% (mass ratio), Zn content of 3% (mass ratio) and Ca content of 0.2% (mass ratio). The effects of ultrasonic treatment on the microstructure, mechanical properties and corrosion behavior of the β-TCP/Mg-Zn-Ca composite were analyzed. The results show that the ultrasonic treatment can refine the microstructure and facilitate the uniform dispersion of the β-TCP particles in the matrix alloy. The corrosion resistance of the β-TCP/Mg-Zn-Ca composites is improved after ultrasonic treatment; The yield strength, ultimate tensile strength and elongation of the as-extruded β-TCP/Mg-Zn-Ca composite after ultrasonic treatment are 211.54 MPa, 334.32 MPa, and 7.28%, respectively, which increase by 8.44%, 4.67% and 17.99%, respectively, compared with the unsonicated β-TCP/Mg-Zn-Ca composite. 国家自然科学基金(51271131;U1764254

References

[30] JARDIM P M, SOLóRZANO G, VANDER S J B, et al. Second phase formation in melt-spun Mg-Ca-Zn alloys[J]. Materials Science and Engineering A, 2004, 381(1-2):196-205.
-->
[1]  WITTE F, FEYERABEND F, MAIER P, et al. Biodegradable magnesium-hydroxyapatite metal matrix composites[J]. Biomaterials, 2007, 28(13):2163-2174.
[2]  SARIS N E, MERVAALA E, KAPPANEN H, et al. Magnesium:An update on physiological, clinical and analytical aspects[J]. Clinica Chimica Acta, 2000, 294(1-2):1-26.
[3]  HANSI C, ARAB A, RZANY A, et al. Differences of platelet adhesion and thrombus activation on amorphous silicon carbide, magnesium alloy, stainless steel, and cobalt chromium stent surfaces[J]. Catheterization & Cardiovascular Interventions, 2009, 73(4):488-496.
[4]  ZHAO D, WITTE F, LU F, et al. Current status on clinical applications of magnesium-based orthopaedic implants:A review from clinical translational perspective[J]. Biomaterials, 2017, 112:287-302.
[5]  LI M, YANG X, WANG W, et al. Evaluation of the osteo-inductive potential of hollow three-dimensional magnesium-strontium substitutes for the bone grafting application[J]. Materials Science & Engineering C, 2016, 73:347-356.
[6]  SONG G. Control of biodegradation of biocompatible magnesium alloys[J]. Corrosion Science, 2007, 49(4):1696-1701.
[7]  LIU D B, HUANG Y, PRANGNELL P B. Microstructure and performance of a biodegradable Mg-1Ca-2Zn-1TCP composite fabricated by combined solidification and deformation processing[J]. Materials Letters, 2012, 82:7-9.
[8]  BLEACH N C, NAZHAT S N, TANNER K E, et al. Effect of filler content on mechanical and dynamic mechanical properties of particulate biphasic calcium phosphate-polylactide composites[J]. Biomaterials, 2002, 23(7):1579-1585.
[9]  SERRA I R, FRADIQUE R, VALLEJO M C S, et al. Production and characterization of chitosan/gelatin/β-TCP scaffolds for improved bone tissue regeneration[J]. Materials Science and Engineering C, 2015, 55:592-604.
[10]  DOROZHKIN S V. Biphasic, triphasic and multiphasic calcium orthophosphates[J]. Acta Biomaterialia, 2012, 8(3):963-977.
[11]  LIN J X, BAI G Z, LIU Z, et al. Effect of ultrasonic stirring on the microstructure and mechanical properties of in situ, Mg2Si/Al composite[J]. Materials Chemistry & Physics, 2016, 178:112-118.
[12]  XUAN Y, NASTAC L. The role of ultrasonic cavitation in refining the microstructure of aluminum based nanocomposites during the solidification process[J]. Ultrasonics, 2017, 83:94-102.
[13]  American Society for Testing and Materials. Standard test methods for tension testing of metallic materials:ASTM E8M-09[S]. West Conshohocken:ASTM International, 2009.
[14]  American Society for Testing and Materials. Standard practice for laboratory immersion corrosion testing of metals:ASTM G31-72[S]. West Conshohocken:ASTM International, 2004.
[15]  DU H, WEI Z, LIU X, et al. Effects of Zn on the microstructure, mechanical property and bio-corrosion property of Mg-3Ca alloys for biomedical application[J]. Materials Chemistry and Physics, 2011, 125(3):568-575.
[16]  WANG Z H, WANG X D, ZHAO Y X, et al. SiC nanoparticles reinforced magnesium matrix composites fabricated by ultrasonic method[J]. Transactions of Nonferrous Metals Society of China, 2010, 20(s3):1029-1032.
[17]  WU C S, ZHANG Z, CAO F H, et al. Study on the anodizing of AZ31 magnesium alloys in alkaline borate solutions[J]. Applied Surface Science, 2007, 253(8):3893-3898.
[18]  ZHANG E, YANG L, XU J, et al. Microstructure, mechanical properties and bio-corrosion properties of Mg-Si (-Ca, Zn) alloy for biomedical application[J]. Acta Biomaterialia, 2010, 6(5):1756-1762.
[19]  WITTE F, KAESE V, HAFERKAMP H, et al. In vivo corrosion of four magnesium alloys and the associated bone response[J]. Biomaterials, 2005, 26(17):3557-3563.
[20]  FENG C, LI M, HOU Y, et al. Effect of Ca on corrosion resistance behavior of as-cast AZ91 magnesium alloys[J]. Rare Metal Materials and Engineering, 2015, 44(1):41-47.
[21]  LIU D B, ZUO Y B, MENG W Y, et al. Fabrication of biodegradable nano-sized β-TCP/Mg composite by a novel melt shearing technology[J]. Materials Science and Engineering C, 2012, 32(5):1253-1258.
[22]  WANG X, ZHANG P, DONG L H, et al. Microstructure and characteristics of interpenetrating β-TCP/Mg-Zn-Mn composite fabricated by suction casting[J]. Materials & Design, 2014, 54:995-1001.
[23]  YAN Y, KANG Y, LI D, et al. Improvement of the mechanical properties and corrosion resistance of biodegradable β-Ca3(PO4)2/Mg-Zn composites prepared by powder metallurgy:The adding β-Ca3(PO4)2, hot extrusion and aging treatment[J]. Materials Science & Engineering C, 2017, 74:582-596.
[24]  RATNA S B, SAMPATH K T S, CHAKKINGAL U, et al. Friction stir processing of magnesium-nanohydroxyapatite composites with controlled in vitro degradation behavior[J]. Materials Science & Engineering C, 2014, 39:315-324.
[25]  WANG X J, WANG N Z, WANG L Y, et al. Processing, microstructure and mechanical properties of micro-SiC particles reinforced magnesium matrix composites fabricated by stir casting assisted by ultrasonic treatment processing[J]. Materials & Design, 2014, 57:638-645.
[26]  PATEL K K, KUMAR V, PUROHIT R, et al. Effect of ultrasonic stirring on changes in microstructure and mechanical properties of cast in-situ Al 5083 alloy composites containing 5wt% and 10wt% TiC particles[J]. Materials Today:Proceedings, 2017, 4(2):3494-3500.
[27]  NIE K B, WANG X J, WU K, et al. Microstructure and tensile properties of micro-SiC particles reinforced magnesium matrix composites produced by semisolid stirring assisted ultrasonic vibration[J]. Materials Science & Engineering A, 2011, 528(29-30):8709-8714.
[28]  HUANG Y, LIU D B, ANGUILANO L, et al. Fabrication and characterization of a biodegradable Mg-2Zn-0.5Ca/1β-TCP composite[J]. Materials Science and Engineering C, 2015, 54:120-132.
[29]  YANG M, LIU D B, ZHANG R F, et al. Microstructure and properties of Mg-3Zn-0.2Ca alloy for biomedical application[J]. Rare Metal Materials and Engineering, 2018, 47(1):93-98.
[30]  -->[30] JARDIM P M, SOLóRZANO G, VANDER S J B, et al. Second phase formation in melt-spun Mg-Ca-Zn alloys[J]. Materials Science and Engineering A, 2004, 381(1-2):196-205.
[31]  何广进, 李文珍. 纳米颗粒分布对镁基复合材料强化机制的影响[J]. 复合材料学报, 2013, 30(2):105-110. HE G J, LI W Z. Influence of nano particle distribution on the strengthening mechanisms of magnesium matrix composites[J]. Acta Materiae Compositae Sinica, 2013, 30(2):105-110(in Chinese).
[32]  王乃光, 王日初. AP65镁合金的电化学行为[M]. 长沙:中南大学出版社, 2015. WANG N G, WANG R C. Electrochemical behavior of AP65 magnesium alloy[M]. Changsha:Central South University Press, 2015(in Chinese).
[33]  MARK P S, ALEXIS M P, JERAWALA H, et al. Magnesium and its alloys as orthopedic biomaterials:A review[J]. Biomaterials, 2006, 27(9):1728-1734.
[34]  WITTE F, HORT N, VOGT C, et al. Degradable biomaterials based on magnesium corrosion[J]. Current Opinion in Solid State and Materials Science, 2008, 12(5-6):63-72.
[35]  CASTELLANI C, LINDTNER R A, HAUSBRANDT P, et al. Bone-implant interface strength and osseointegration:Biodegradable magnesium alloy versus standard titanium control[J]. Acta Biomaterialia, 2011, 7(1):432-440.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133