|
- 2020
多壁碳纳米管接枝聚己内酯对聚左旋乳酸结晶行为和热稳定性的影响
|
Abstract:
通过羟基化多壁碳纳米管(MWCNTs-OH)引发ε-己内酯(ε-CL)开环聚合制备了聚己内酯(PCL)链接枝的MWCNTs-OH(MWCNTs-OH-g-PCL)。利用溶液共混获得具有不同MWCNTs-OH-g-PCL含量的MWCNTs-OH-g-PCL/聚左旋乳酸(PLLA)复合材料。通过FTIR测试发现,MWCNTs-OH-g-PCL在1 720 cm-1附近出现PCL中的羰基(C=O)伸缩振动峰,表明接枝产物合成成功。通过DSC、偏光显微镜(POM)和TGA观察研究了MWCNTs-OH-g-PCL的加入对PLLA均聚物结晶行为和热稳定性的影响。结果表明,由于MWCNTs-OH-g-PCL的异质成核作用及PCL的增塑作用,MWCNTs-OH-g-PCL/PLLA复合材料的结晶度和最佳等温结晶温度增大。MWCNTs-OH-g-PCL中PCL的接枝量为66%,MWCNTs-OH-g-PCL/PLLA复合材料的分解温度提高了约30℃。 The hydroxylated multi-walled carbon nanotubes (MWCNTs-OH) initiated the ring-opening polymerization of ε-caprolactone (ε-CL), and polycaprolactone (PCL) grafted MWCNTs-OH (MWCNTs-OH-g-PCL) was prepared. The MWCNTs-OH-g-PCL/poly(L-lactic acid) (PLLA) composites were obtained by solution blending which had different contents of MWCNTs-OH-g-PCL. The grafted product was characterized by FTIR. It is found that MWCNTs-OH-g-PCL exhibits a carbonyl (C=O) stretching vibration peak in PCL at near 1 720 cm-1, indicating that the grafted product is synthesized successfully. The effects of MWCNTs-OH-g-PCL on the crystallization behavior and thermal stability of PLLA homopolymers were investigated by DSC, polarized optical microscope (POM) and TGA. The results show that the crystallinity and the optimum temperaturerate of isothermal crystallization of the MWCNTs-OH-g-PCL/PLLA composites increase by the heterogeneous nucleation of MWCNTs-OH-g-PCL and the plasticization of PCL. The results also show that the grafting amounts of PCL in the MWCNTs-OH-g-PCL is 66%, and the decomposition temperature of the MWCNTs-OH-g-PCL/PLLA composites increases by about 30℃. 国家自然科学基金资助项目(21506167);陕西省教育厅科研计划项目(18JK0390);西安工业大学校长基金(XAGDXJJ18007);陕西省自然科学基础研究计划项目(2017JQ5099
[1] | SAEIDLOU S, HUNEAULT M A, LI H, et al. Poly(lactic acid) crystallization[J]. Progress in Polymer Science, 2012, 37(12):1657-1677. |
[2] | LUO C, YANG M R, XIAO W, et al. Relationship between the crystallization behavior of poly(ethylene glycol) and stereocomplex crystallization of poly(L-lactic acid)/poly(D-lactic acid)[J]. Polymer International, 2018, 67(3):313-321. |
[3] | BENALI S, AOUADI S, DECHIEF A L, et al. Key factors for tuning hydrolytic degradation of polylactide/zinc oxide nanocomposites[J]. Nanocomposites, 2015, 1(1):51-61. |
[4] | ZHANG Y, DENG B Y, LIU Q S, et al. Nonisothermal crystallization kinetics of poly(lactic acid)/nanosilica com-posites[J]. Journal of Macromolecular Science Part B:Physics, 2013, 52(2):334-343. |
[5] | SUN Y, HE C. Synthesis and stereocomplex crystallization of poly(lactide)-graphene oxide nanocomposites[J]. ACS Macro Letters, 2012, 1(6):709-713. |
[6] | 唐凤, 罗春燕, 杨敏蕊, 等. 苯基-低聚倍半硅氧烷和氨基-低聚倍半硅氧烷对左旋聚乳酸结晶行为及热稳定性的影响[J]. 复合材料学报, 2018, 35(11):3051-3061.TANG F, LUO C Y, YANG M R, et al. Effect of phenyl-polyhedral oligomeric silsesquioxane and amino-polyhedral oligomeric silsesquioxane on crystallization behavior and thermal stability of ploy(L-lactic acid)[J]. Acta Materiae Compositae Sinica, 2018, 35(11):3051-3061(in Chinese). |
[7] | 杨敏蕊, 陈卫星, 罗春燕, 等. 接枝改性多面体齐聚倍半硅氧烷对左旋聚乳酸结晶行为的影响[J]. 化学通报, 2018, 81(10):951-956.YANG M R, CHEN W X, LUO C Y, et al. Effect of graft modified polyhedral oligomeric silsesquioxane on the crystallization behavior of ploy(L-lacticacid)[J]. Chemistry, 2018, 81(10):951-956(in Chinese). |
[8] | BAUGHMAN R H, ZAKHIDOV A A, DE-HEER W A. Carbon nanotubes-the route toward applications[J]. Science, 2002, 297(5582):787-792. |
[9] | YU M F, FILES B S, AREPALLI S, et al. Tensile loading of ropes of single wall carbon nanotubes and their mechanical properties[J]. Physical Review Letters, 2014, 84(3-4):5552-55. |
[10] | ZHU Z, WANG R, DONG Z, et al. Morphology, crystallization, and mechanical properties of poly(ethylene terephthalate)/multiwalled carbon nanotubes composites[J]. Journal of Applied Polymer Science, 2015, 120(6):3460-3468. |
[11] | CHEN G X, SHIMIZU H. Multiwalled carbon nanotubes grafted with polyhedral oligomeric silsesquioxane and its dispersion in poly(L-lactide) matrix[J]. Polymer, 2008, 49(4):943-951. |
[12] | MONTEIRO M S S B, FABIáN V C, PEDRO J S, et al. 1H-NMR relaxometry and X-ray study of PCL/nevirapine hybrids[J]. Polymer Testing, 2013, 32(3):553-566. |
[13] | LIANG J Z, ZHOU T Y, ZOU S Y. Non-isothermal crystallization properties of polypropylene composites filled with multi-walled carbon nanotubes[J]. Polymer Testing, 2016, 55:184-189. |
[14] | SUN Y, HE C. Synthesis, stereocomplex crystallization, morphology and mechanical property of poly(lactide)-carbon nanotube nanocomposites[J]. RSC Advances, 2013, 3(7):2219-2226. |
[15] | 夏宇驰, 熊成浩, 刘煜. 聚乳酸的合成及其修饰的研究进展[J]. 药物生物技术, 2015, 22(6):535-539.XIA Y C, XIONG C H, LIU Y. Research advances in production and modification of polylactic acid[J]. Chinese Journal of Pharmaceutical Biotechnology, 2015, 22(6):535-539(in Chinese). |
[16] | WANG S, LIANG R, WANG B, et al. Dispersion and thermal conductivity of carbon nanotube composites[J]. Carbon, 2009, 47(1):53-57. |
[17] | FAGAN J A, LANDI B J, MANDELBAUM I, et al. Comparative measures of single-wall carbon nanotube dispersion[J]. The Journal of Physical Chemistry B, 2006, 110(47):23801-23805. |
[18] | HUA L, KAI W, YANG J J, et al. A new poly(L-lactide)-grafted graphite oxide composite:Facile synthesis, electrical properties and crystallization behaviors[J]. Polymer Degradation & Stability, 2010, 95(12):2619-2627. |
[19] | CAO Z Q, SUN X R, BAO R Y, et al. Carbon nanotube grafted poly(L-lactide)-block-poly(D-lactide) and its stereocomplexation with poly(lactide)s:The nucleation effect of carbon nanotube[J]. ACS Sustainable Chemistry & Engineering, 2016, 4(5):2660-2669. |
[20] | IWATA T. Biodegradable and bio-based polymers:Future prospects of eco-friendly plastics[J]. Angewandte Chemie, 2015, 46(18):3210-3215. |
[21] | DRUMRIGHT R E, GRUBER P R, HENTON D E. Polylactic acid technology[J]. Advanced Materials, 2000, 12(23):1841-1846. |